Information Retrieval and Recommender Systems

This chapter provides a brief introduction to two of the most common applications of data science methods in e-commerce: information retrieval and recommender systems. First, a brief overview of the systems is presented followed by details on some of the most commonly applied models used for these systems and how these systems are evaluated. The chapter ends with an overview of some of the application areas in which information retrieval and recommender systems are typically developed.

[1]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[3]  Elad Yom-Tov,et al.  Estimating the query difficulty for information retrieval , 2010, Synthesis Lectures on Information Concepts, Retrieval, and Services.

[4]  Roberto Turrin,et al.  Cross-Domain Recommender Systems , 2015, Recommender Systems Handbook.

[5]  Alexander Felfernig,et al.  Group Recommender Systems: An Introduction , 2018 .

[6]  Lior Rokach,et al.  Recommender Systems Handbook , 2010 .

[7]  Eric Brill,et al.  Improving web search ranking by incorporating user behavior information , 2006, SIGIR.

[8]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[9]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[10]  Nuria Oliver,et al.  Data Mining Methods for Recommender Systems , 2015, Recommender Systems Handbook.

[11]  Pasquale Lops,et al.  Semantics-aware Content-based Recommender Systems , 2014, CBRecSys@RecSys.

[12]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[13]  C. J. van Rijsbergen,et al.  Probabilistic models of information retrieval based on measuring the divergence from randomness , 2002, TOIS.

[14]  Raymond J. Mooney and Paul N. Bennett and Loriene Roy,et al.  Book Recommending Using Text Categorization with Extracted Information , 1998 .

[15]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[16]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[17]  Katrien Verbert,et al.  Recommender Systems for Technology Enhanced Learning , 2014, Springer New York.

[18]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[19]  W. Bruce Croft,et al.  Search Engines - Information Retrieval in Practice , 2009 .

[20]  W. Bruce Croft,et al.  A Language Modeling Approach to Information Retrieval , 1998, SIGIR Forum.

[21]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[22]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[23]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[24]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[25]  Tie-Yan Liu Learning to Rank for Information Retrieval , 2009, Found. Trends Inf. Retr..

[26]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[27]  Toon De Pessemier,et al.  MovieTweetings: a movie rating dataset collected from twitter , 2013, RecSys 2013.

[28]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[29]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[30]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[31]  Soumen Chakrabarti,et al.  Learning to Rank in Vector Spaces and Social Networks , 2007, Internet Math..

[32]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[33]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[34]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[35]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[36]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[37]  Francesco Ricci,et al.  Context-Aware Recommender Systems , 2011, AI Mag..

[38]  Judy Kay,et al.  RECON: a reciprocal recommender for online dating , 2010, RecSys '10.

[39]  Yong Yu,et al.  Exploring folksonomy for personalized search , 2008, SIGIR '08.