Leitmann's direct method for fractional optimization problems

Abstract Based on a method introduced by Leitmann [G. Leitmann, A note on absolute extrema of certain integrals, Int. J. Non-Linear Mech. 2 (1967) 55–59], we exhibit exact solutions for some fractional optimization problems of the calculus of variations and optimal control.

[1]  George Leitmann On a class of direct optimization problems 1,2 , 2002 .

[2]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[3]  Delfim F. M. Torres,et al.  Calculus of variations with fractional derivatives and fractional integrals , 2009, Appl. Math. Lett..

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.

[6]  Delfim F. M. Torres,et al.  Fractional Noether's theorem in the Riesz-Caputo sense , 2010, Appl. Math. Comput..

[7]  Dumitru Baleanu,et al.  A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.

[8]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[9]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[10]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[11]  G. Leitmann,et al.  On a Class of Direct Optimization Problems , 2001 .

[12]  Delfim F. M. Torres,et al.  Contrasting Two Transformation-based Methods for Obtaining Absolute Extrema , 2008 .

[13]  Agnieszka B. Malinowska,et al.  Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales , 2010, Appl. Math. Comput..

[14]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[15]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[16]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[17]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[18]  Delfim F. M. Torres,et al.  Remarks on the calculus of variations on time scales , 2007 .

[19]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[20]  Om P. Agrawal,et al.  A Formulation and Numerical Scheme for Fractional Optimal Control Problems , 2008 .

[21]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[22]  Delfim F. M. Torres,et al.  Absolute Extrema of Invariant Optimal Control Problems , 2006 .

[23]  George Leitmann,et al.  A note on absolute extrema of certain integrals , 1967 .

[24]  Stefan Samko,et al.  FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE MIGHT HAVE FRACTIONAL DERIVATIVES OF ALL ORDERS LESS THAN ONE , 1994 .

[25]  D. A. Carlson An Observation on Two Methods of Obtaining Solutions to Variational Problems , 2002 .

[26]  Dumitru Baleanu,et al.  New applications of fractional variational principles , 2008 .

[27]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[28]  George Leitmann,et al.  Some Extensions to a Direct Optimization Method , 2001 .

[29]  Delfim F. M. Torres,et al.  Calculus of variations on time scales with nabla derivatives , 2008, 0807.2596.

[30]  Delfim F. M. Torres,et al.  NECESSARY OPTIMALITY CONDITIONS FOR FRACTIONAL DIFFERENCE PROBLEMS OF THE CALCULUS OF VARIATIONS , 2010, 1007.0594.