MADE-in : a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state

Abstract. Black carbon (BC) and mineral dust are among the most abundant insoluble aerosol components in the atmosphere. When released, most BC and dust particles are externally mixed with other aerosol species. Through coagulation with particles containing soluble material and condensation of gases, the externally mixed particles may obtain a liquid coating and be transferred into an internal mixture. The mixing state of BC and dust aerosol particles influences their radiative and hygroscopic properties, as well as their ability of forming ice crystals. We introduce the new aerosol microphysics submodel MADE-in, implemented within the ECHAM/MESSy Atmospheric Chemistry global model (EMAC). MADE-in is able to track mass and number concentrations of BC and dust particles in their different mixing states, as well as particles free of BC and dust. MADE-in describes these three classes of particles through a superposition of seven log-normally distributed modes, and predicts the evolution of their size distribution and chemical composition. Six out of the seven modes are mutually interacting, allowing for the transfer of mass and number among them. Separate modes for the different mixing states of BC and dust particles in EMAC/MADE-in allow for explicit simulations of the relevant aging processes, i.e. condensation, coagulation and cloud processing. EMAC/MADE-in has been evaluated with surface and airborne measurements and mostly performs well both in the planetary boundary layer and in the upper troposphere and lowermost stratosphere.

[1]  Axel Lauer,et al.  Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere , 2006 .

[2]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[3]  Volker Ebert,et al.  The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols , 2008 .

[4]  A. Clarke,et al.  Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C130 Flight #6 , 2005 .

[5]  D. Blake,et al.  Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004 , 2007 .

[6]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[7]  A. Kirkevåg,et al.  Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings , 2008 .

[8]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[9]  M. Molina,et al.  Hydrophilic properties of aged soot , 2005 .

[10]  Meinrat O. Andreae,et al.  Aerosol cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols , 2008 .

[11]  M. Dameris,et al.  Contribution of road traffic emissions to the atmospheric black carbon burden in the mid-1990s , 2001 .

[12]  Patrick Jöckel,et al.  Atmospheric Chemistry and Physics Technical Note: a New Comprehensive Scavenging Submodel for Global Atmospheric Chemistry Modelling , 2006 .

[13]  W. Maenhaut,et al.  The chemical composition of tropospheric aerosols and their contributing sources to a continental background site in northern Zimbabwe from 1994 to 2000 , 2007 .

[14]  Long-term aerosol composition measurements and source apportionment at Rukomechi, Zimbabwe , 2000 .

[15]  K. Prather,et al.  Direct observations of the atmospheric processing of Asian mineral dust , 2006 .

[16]  J. Lelieveld,et al.  Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere - Part 1: Model description, sea salt aerosols and pH , 2008 .

[17]  P. Mcmurry,et al.  Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor , 2009 .

[18]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[19]  B. Wehner,et al.  Absorption amplification of black carbon internally mixed with secondary organic aerosol , 2005 .

[20]  T. Zhao,et al.  Global modeling of multicomponent aerosol species: Aerosol optical parameters , 2008 .

[21]  U. Lohmann Possible Aerosol Effects on Ice Clouds via Contact Nucleation , 2002 .

[22]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[23]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[24]  J. Lelieveld,et al.  Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations , 2007 .

[25]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .

[26]  D. Blake,et al.  Radiative impact of mixing state of black carbon aerosol in Asian outflow , 2008 .

[27]  K. Prather,et al.  Aircraft measurements of vertical profiles of aerosol mixing states , 2010 .

[28]  John H. Seinfeld,et al.  Predicting global aerosol size distributions in general circulation models , 2002 .

[29]  R. Niessner,et al.  The effects of aging processes on critical supersaturation ratios of ultrafine carbon aerosols , 1999 .

[30]  Sonia M. Kreidenweis,et al.  Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles , 2009 .

[31]  Patrick Jöckel,et al.  Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy) , 2006 .

[32]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[33]  Patrick Jöckel,et al.  Atmospheric Chemistry and Physics Technical Note: Implementation of Prescribed (offlem), Calculated (onlem), and Pseudo-emissions (tnudge) of Chemical Species in the Modular Earth Submodel System (messy) , 2022 .

[34]  Axel Lauer,et al.  The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment , 2007 .

[35]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[36]  J. Penner,et al.  Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution , 2009 .

[37]  Luis Kornblueh,et al.  Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model , 2006 .

[38]  W. Maenhaut,et al.  Impact of Seasonal Biomass Burning on Air Quality in the 'Top End' of Regional Northern Australia , 2003 .

[39]  M. Petters,et al.  Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation , 2010 .

[40]  Martin Wirth,et al.  Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006 , 2009 .

[41]  A. Uchiyama,et al.  State of mixture of atmospheric submicrometer black carbon particles and its effect on particulate light absorption , 2009 .

[42]  Philip Stier,et al.  Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1) , 2010 .

[43]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[44]  S. Macko,et al.  Characterization of sources for southern African aerosols through fatty acid and trajectory analyses , 2003 .

[45]  W. Maenhaut,et al.  Aerosol composition at Jabiru, Australia, and impact of biomass burning , 2000 .

[46]  U. Lohmann,et al.  Coatings and their enhancement of black carbon light absorption in the tropical atmosphere , 2008 .

[47]  M. Memmesheimer,et al.  Modal aerosol dynamics model for Europe: development and first applications , 1998 .

[48]  A. Clarke,et al.  A Pacific Aerosol Survey. Part I: A Decade of Data on Particle Production, Transport, Evolution, and Mixing in the Troposphere* , 2002 .

[49]  Prashant Kumar,et al.  Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol , 2009 .

[50]  C. Songa,et al.  Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C 130 Flight # 6 , 2004 .

[51]  J. Lelieveld,et al.  Stratospheric dryness: model simulations and satellite observations , 2007 .

[52]  Patrick Jöckel,et al.  Influence of different convection parameterisations in a GCM , 2006 .

[53]  J. Lelieveld,et al.  Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1 , 2007 .

[54]  A. Bertram,et al.  Effects of sulfate coatings on the ice nucleation properties of a biological ice nucleus and several types of minerals , 2010 .

[55]  L. Merlivat,et al.  Air-Sea Gas Exchange Rates: Introduction and Synthesis , 1986 .

[56]  D. Covert,et al.  Heterogeneous freezing of droplets with immersed mineral dust particles – measurements and parameterization , 2009 .

[57]  R. Ruedy,et al.  MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models , 2008 .

[58]  K. Froyd,et al.  Deactivation of ice nuclei due to atmospherically relevant surface coatings , 2009 .

[59]  F. Binkowski,et al.  Models-3 community multiscale air quality (cmaq) model aerosol component , 2003 .

[60]  Patrick Jöckel,et al.  Atmospheric Chemistry and Physics Technical Note: the Modular Earth Submodel System (messy) – a New Approach towards Earth System Modeling , 2022 .

[61]  Axel Lauer,et al.  Emissions from international shipping: 1. The last 50 years , 2005 .

[62]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[63]  H. Burtscher,et al.  Hygroscopic properties of carbon and diesel soot particles , 1997 .

[64]  Alfred Wiedensohler,et al.  Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology , 2001 .

[65]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[66]  M. Wendisch,et al.  Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98) , 2002 .

[67]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[68]  P. Buat-Ménard The role of air-sea exchange in geochemical cycling , 1986 .

[69]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[70]  A. Lauer,et al.  Simulating aerosol microphysics with the ECHAM4/MADE GCM ? Part II: Results from a first multiannual simulation of the submicrometer aerosol , 2006 .

[71]  C. Timmreck,et al.  An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions , 2002 .

[72]  Meridional gradients of light absorbing carbon over northern Europe , 2008 .

[73]  U. Schumann,et al.  Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes , 2003 .

[74]  U. Lohmann,et al.  Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget , 2007 .

[75]  Mark Lawrence,et al.  The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere , 2006 .

[76]  A. Petzold,et al.  Aerosol states in the free troposphere at northern midlatitudes , 2002 .

[77]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[78]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[79]  Johannes Hendricks,et al.  Do aircraft black carbon emissions affect cirrus clouds on the global scale? , 2005 .

[80]  T. Bond,et al.  Limitations in the enhancement of visible light absorption due to mixing state , 2006 .

[81]  S. Ghan,et al.  AEROSOL PROPERTIES AND PROCESSES , 2007 .

[82]  Anthony S. Wexler,et al.  Influence of dust composition on cloud droplet formation , 2006 .

[83]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[84]  Luca Bonaventura,et al.  The atmospheric general circulation model ECHAM 5. PART I: Model description , 2003 .

[85]  Shian-Jiann Lin,et al.  Atmospheric Sulfur Cycle Simulated in the Global Model Gocart: Model Description and Global Properties , 2013 .

[86]  U. Lohmann,et al.  First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model , 2002 .

[87]  U. Lohmann,et al.  Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions , 2004 .

[88]  L. Gomes,et al.  Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006 , 2010 .

[89]  J. Lelieveld,et al.  Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. , 1995 .

[90]  Patrick Jöckel,et al.  Atmospheric Chemistry and Physics Technical note: The new comprehensive atmospheric chemistry module MECCA , 2005 .

[91]  Y. Makino,et al.  Soot particles in the free troposphere over Australia , 2005 .

[92]  Hajime Okamoto,et al.  Global three‐dimensional simulation of aerosol optical thickness distribution of various origins , 2000 .

[93]  A. Kasper-Giebl,et al.  Black carbon (BC) in alpine aerosols and cloud water—concentrations and scavenging efficiencies , 2001 .

[94]  R. Duce,et al.  Trace elements in the atmosphere over the North Atlantic , 1995 .

[95]  M. Smith,et al.  The sea spray generation function , 1998 .

[96]  J. Lelieveld,et al.  A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model , 1998 .

[97]  J. Penner,et al.  Correction to “Prediction of the number of cloud droplets in the ECHAM GCM” by Ulrike Lohmann et al. , 1999 .

[98]  R. C. Easter,et al.  Simulating the evolution of soot mixing state with a particle-resolved aerosol model , 2008, 0809.0875.

[99]  S. Kreidenweis,et al.  Ice formation by black carbon particles , 1999 .

[100]  Corinna Hoose,et al.  The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds , 2008 .

[101]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[102]  D. Fahey,et al.  Seasonal variability of black carbon mass in the tropical tropopause layer , 2011 .

[103]  Paul J. Crutzen,et al.  An efficient method for online calculations of photolysis and heating rates , 1998 .

[104]  Steven J. Ghan,et al.  Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models , 2007 .

[105]  M. Schnaiter,et al.  Hygroscopic behavior of soot particles coated with oxidation products of α-pinene , 2000 .

[106]  N. Takegawa,et al.  Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation , 2009 .

[107]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[108]  B. Vogel,et al.  Modeling aerosols on the mesoscale‐γ: Treatment of soot aerosol and its radiative effects , 2003 .

[109]  U. Lohmann,et al.  Sensitivity studies of different aerosol indirect effects in mixed-phase clouds , 2009 .

[110]  M. Jacobson GATOR-GCMM: A global through urban scale air pollution and weather forecast model , 2001 .

[111]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[112]  Axel Lauer,et al.  Simulating aerosol microphysics with the ECHAM/MADE GCM – Part I: Model description and comparison with observations , 2005 .

[113]  J. Lelieveld,et al.  Gas/aerosol partitioning 2. Global modeling results , 2002 .

[114]  W. Landman Climate change 2007: the physical science basis , 2010 .

[115]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[116]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[117]  Peter H. McMurry,et al.  Modal Aerosol Dynamics Modeling , 1997 .

[118]  P. Sheridan,et al.  Aerosol particles in the upper troposphere and lower stratosphere: Elemental composition and morphology of individual particles in northern midlatitudes , 1994 .

[119]  R. Flagan,et al.  The extinction coefficient of multicomponent aerosols , 1982 .

[120]  M. Jacobson A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols , 2000 .

[121]  U. Lohmann,et al.  Influence of future air pollution mitigation strategies on total aerosol radiative forcing , 2008 .

[122]  A. Mangold,et al.  Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles , 2005 .

[123]  J. Seinfeld,et al.  Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species , 1996 .

[124]  M. Schulz,et al.  Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol , 2001 .

[125]  D. Rind,et al.  A simple lightning parameterization for calculating global lightning distributions , 1992 .

[126]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[127]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[128]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .