Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber

[1]  C. Labandeira,et al.  Life habits and evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber , 2019, Nature Communications.

[2]  Mario Coiro,et al.  How deep is the conflict between molecular and fossil evidence on the age of angiosperms? , 2019, The New phytologist.

[3]  D. Batten,et al.  Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France) , 2019, Cretaceous Research.

[4]  Jianguo Li,et al.  Various amberground marine animals on Burmese amber with discussions on its age , 2018, Palaeoentomology.

[5]  A. Rasnitsyn,et al.  Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna , 2018, Proceedings of the Geologists' Association.

[6]  Xin Wang,et al.  The Core Eudicot Boom Registered in Myanmar Amber , 2018, Scientific Reports.

[7]  D. Grimaldi Basal Cyclorrhapha in Amber from the Cretaceous and Tertiary(Insecta: Diptera), and Their Relationships: Brachycera in Cretaceous Amber Part IX , 2018, Bulletin of the American Museum of Natural History.

[8]  M. Engel,et al.  Beetle Pollination of Cycads in the Mesozoic , 2018, Current Biology.

[9]  K. L. Chambers,et al.  Endobeuthos paleosum gen. et sp. nov., fossil flowers of uncertain affinity from mid-Cretaceous Myanmar amber , 2018, Journal of the Botanical Research Institute of Texas.

[10]  S. Renner,et al.  The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms , 2018, Proceedings of the Royal Society B: Biological Sciences.

[11]  G. Rothwell,et al.  Tracking the Initial Diversification of Asterids: Anatomically Preserved Cornalean Fruits from the Early Coniacian (Late Cretaceous) of Western North America , 2018, International Journal of Plant Sciences.

[12]  N. Fraser,et al.  Terrestrial Conservation Lagerstätten: Windows into the Evolution of Life on Land , 2017 .

[13]  D. Grimaldi,et al.  Early lineages of Vespidae (Hymenoptera) in Cretaceous amber , 2017 .

[14]  D. Peris,et al.  False Blister Beetles and the Expansion of Gymnosperm-Insect Pollination Modes before Angiosperm Dominance , 2017, Current Biology.

[15]  A. Agrawal,et al.  Learning in Insect Pollinators and Herbivores. , 2017, Annual review of entomology.

[16]  D. Grimaldi Diverse Orthorrhaphan Flies (Insecta: Diptera: Brachycera) in Amber From the Cretaceous of Myanmar: Brachycera in Cretaceous Amber, Part VII , 2016, Bulletin of the American Museum of Natural History.

[17]  K. Nixon,et al.  A mosaic Lauralean flower from the Early Cretaceous of Myanmar. , 2016, American journal of botany.

[18]  N. Jud Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous , 2015, Proceedings of the Royal Society B: Biological Sciences.

[19]  D. Grimaldi,et al.  Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms , 2015, Current Biology.

[20]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[21]  Johannes E. Schindelin,et al.  The ImageJ ecosystem: An open platform for biomedical image analysis , 2015, Molecular reproduction and development.

[22]  V. Krassilov,et al.  AN ANGIOSPERM CRADLE COMMUNITY AND NEW PROANGIOSPERM TAXA , 2015 .

[23]  E. Barrón,et al.  Palynology of Aptian and upper Albian (Lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain) , 2015 .

[24]  D. Grimaldi,et al.  The long-tongued Cretaceous scorpionfly Parapolycentropus Grimaldi and Rasnitsyn (Mecoptera: Pseudopolycentropodidae): New Data and Interpretations , 2014 .

[25]  Anne Sophie Krossa Concepts and Framework , 2013 .

[26]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[27]  D. Grimaldi,et al.  Age constraint on Burmese amber based on U–Pb dating of zircons , 2012 .

[28]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[29]  P. Tafforeau,et al.  Thrips pollination of Mesozoic gymnosperms , 2012, Proceedings of the National Academy of Sciences.

[30]  Peter R. Crane,et al.  Early Flowers and Angiosperm Evolution , 2011 .

[31]  B. Danforth,et al.  Morphology, Classification, and Antiquity of Melittosphex burmensis (Apoidea: Melittosphecidae) and Implications for Early Bee Evolution , 2011, Journal of Paleontology.

[32]  E. M. Friis,et al.  Early Flowers and Angiosperm Evolution by Else Marie Friis , 2011 .

[33]  S. Farris,et al.  Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects , 2011, Proceedings of the Royal Society B: Biological Sciences.

[34]  C. Labandeira The Pollination of Mid Mesozoic Seed Plants and the Early History of Long-proboscid Insects1,2,3 , 2010 .

[35]  G. Poinar,et al.  Tropidogyne, a New Genus of Early Cretaceous Eudicots (Angiospermae) from Burmese Amber , 2010 .

[36]  G. Poinar Cascoplecia insolitis (Diptera: Cascopleciidae), a new family, genus, and species of flower-visiting, unicorn fly (Bibionomorpha) in Early Cretaceous Burmese amber , 2010 .

[37]  C. Labandeira,et al.  A Probable Pollination Mode Before Angiosperms: Eurasian, Long-Proboscid Scorpionflies , 2009, Science.

[38]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[39]  Karl J Niklas,et al.  Darwin's second 'abominable mystery': Why are there so many angiosperm species? , 2009, American journal of botany.

[40]  Zhiduan Chen,et al.  Pollination biology of basal angiosperms (ANITA grade). , 2009, American journal of botany.

[41]  Michael Hesse,et al.  Pollen Terminology: An illustrated handbook , 2008 .

[42]  W. Crepet The Fossil Record of Angiosperms: Requiem or Renaissance?1 , 2008 .

[43]  Stephen Blackmore,et al.  Glossary of pollen and spore terminology , 2007 .

[44]  G. Poinar,et al.  EOËPIGYNIA BURMENSIS GEN. AND SP. NOV., AN EARLY CRETACEOUS EUDICOT FLOWER (ANGIOSPERMAE) IN BURMESE AMBER , 2007 .

[45]  B. Heming The Evolutionary Biology of Flies , 2006 .

[46]  D. Grimaldi,et al.  Evolution of the insects , 2005 .

[47]  G. Poinar,et al.  PALAEOANTHELLA HUANGII GEN. AND SP. NOV., AN EARLY CRETACEOUS FLOWER (ANGIOSPERMAE) IN BURMESE AMBER , 2005 .

[48]  M. Donoghue,et al.  Dark and disturbed: a new image of early angiosperm ecology , 2004, Paleobiology.

[49]  G. Poinar Programinis burmitis gen. et sp. nov., and P. laminatus sp. nov., Early Cretaceous grass-like monocots in Burmese amber , 2004 .

[50]  Johanna H. A. van Konijnenburg-van Cittert,et al.  A sporomorph ecogroup model for the Northwest European Jurassic - Lower Cretaceousi: concepts and framework , 2004, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[51]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[52]  A. Rasnitsyn,et al.  New pollen morphotype from gut compression of a Cretaceous insect, and its bearing on palynomorphological evolution and palaeoecology , 2003 .

[53]  R. Cruickshank,et al.  Geology of an amber locality in the Hukawng Valley, Northern Myanmar , 2003 .

[54]  J. Kvaček,et al.  Bayeritheca hughesii gen. et sp. nov., a new Eucommiidites -bearing pollen organ from the Cenomanian of Bohemia , 2001 .

[55]  D. Inouye,et al.  Flies and flowers: taxonomic diversity of anthophiles and pollinators , 2001, The Canadian Entomologist.

[56]  D. Grimaldi The Co-Radiations of Pollinating Insects and Angiosperms in the Cretaceous , 1999 .

[57]  D. J. Brothers Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea) , 1999 .

[58]  H. Nagamasu,et al.  Pollination biology in a lowland dipterocarp forest inSarawak, Malaysia. I. Characteristics of the plant-pollinator communityin a lowland dipterocarp forest. , 1998, American journal of botany.

[59]  D. Ren,et al.  Flower-associated brachycera flies as fossil evidence for jurassic angiosperm origins , 1998, Science.

[60]  L. Vilhelmsen The preoral cavity of lower Hymenoptera (Insecta): comparative morphology and phylogenetic significance , 1996 .

[61]  Zeil,et al.  Structure and function of learning flights in ground-nesting bees and wasps , 1996, The Journal of experimental biology.

[62]  R. Menzel,et al.  Learning and memory in honeybees: from behavior to neural substrates. , 1996, Annual review of neuroscience.

[63]  J. Zeil,et al.  Structure and function of learning flights in bees and wasps , 1996 .

[64]  Makoto Kato,et al.  POLLINATION BIOLOGY OF GNETUM (GNETACEAE) IN A LOWLAND MIXED DIPTEROCARP FOREST IN SARAWAK , 1995 .

[65]  Nancy Greig,et al.  Ecology and Natural History of a Neotropical Rain Forest , 1995 .

[66]  Kamaljit S. Bawa,et al.  La Selva: ecology and natural history of a neotropical rain forest. , 1995 .

[67]  K. Bawa,et al.  La Selva: Ecology and Natural History of a Neotropical Rain Forest , 1995 .

[68]  J. Carpenter Phylogeny of Aculeata: Chrysidoidea and Vespoidea (Hymenoptera) , 1993 .

[69]  J. Doyle,et al.  EARLY CRETACEOUS TETRADS, ZONASULCULATE POLLEN, AND WINTERACEAE. II. CLADISTIC ANALYSIS AND IMPLICATIONS , 1990 .

[70]  N. Hughes,et al.  Barremian-Aptian angiospermid pollen records from southern England , 1990 .

[71]  J. Ward Early Cretaceous angiosperm pollen from the Cheyenne and Kiowa Formations (Albian) of Kansas, U.S.A. , 1986 .

[72]  H. G. Baker,et al.  Insects as Flower Visitors and Pollinators , 1983 .

[73]  Norm Johnson,et al.  Hymenoptera Apocrita of Mesozoic. , 1975 .

[74]  V. A. Krasilov Paleoecology of Terrestrial Plants: Basic Principles and Techniques , 1975 .