Exploring a Double Full-Stack Communications-Enabled Architecture for Multi-Core Quantum Computers

Being a very promising technology, with impressive advances in the recent years, it is still unclear how quantum computing will scale to satisfy the requirements of its most powerful applications. Although continued progress in the fabrication and control of qubits is required, quantum computing scalability will depend as well on a comprehensive architectural design considering a multi-core approach as an alternative to the traditional monolithic version, hence including a communications perspective. However, this goes beyond introducing mere interconnects. Rather, it implies consolidating the full communications stack in the quantum computer architecture. In this paper, we propose a double full-stack architecture encompassing quantum computation and quantum communications, which we use to address the monolithic versus multi-core question with a structured design methodology. For that, we revisit the different quantum computing layers to capture and model their essence by highlighting the open design variables and performance metrics. Using behavioral models and actual measurements from existing quantum computers, the results of simulations suggest that multi-core architectures may effectively unleash the full quantum computer potential.

[1]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[2]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[3]  Gushu Li,et al.  Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices , 2018, ASPLOS.

[4]  Wolfram Schulte,et al.  An Approach for Effective Design Space Exploration , 2010, Monterey Workshop.

[5]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[6]  Ross Duncan,et al.  On the qubit routing problem , 2019, TQC.

[7]  Sun Yin,et al.  Spin relaxation and decoherence of two-level systems , 2005 .

[8]  Fernando Magno Quintão Pereira,et al.  Qubit allocation , 2018, CGO.

[9]  Margaret Martonosi,et al.  Programming languages and compiler design for realistic quantum hardware , 2017, Nature.

[10]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[11]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[12]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[13]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[14]  D. Dieks Communication by EPR devices , 1982 .

[15]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[16]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[17]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[18]  Xiang Fu,et al.  The engineering challenges in quantum computing , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[19]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[20]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[21]  Edoardo Charbon,et al.  A reconfigurable cryogenic platform for the classical control of quantum processors. , 2016, The Review of scientific instruments.

[22]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[23]  Moshe Y. Vardi Quantum hype and quantum skepticism , 2019, Commun. ACM.

[24]  M. I. Dyakonov Will We Ever Have a Quantum Computer? , 2019, PARCO.

[25]  K. Bertels,et al.  OpenQL : A Portable Quantum Programming Framework for Quantum Accelerators , 2020, ACM J. Emerg. Technol. Comput. Syst..

[26]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[27]  Margaret Martonosi,et al.  ScaffCC: Scalable compilation and analysis of quantum programs , 2015, Parallel Comput..

[28]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[29]  Matthias Gries,et al.  Methods for evaluating and covering the design space during early design development , 2004, Integr..

[30]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[31]  John Kubiatowicz,et al.  Interconnection Networks for Scalable Quantum Computers , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[32]  Eduard Alarcón,et al.  Optimized model-based design space exploration of distributed multi-orbit multi-platform Earth observation spacecraft architectures , 2018, 2018 IEEE Aerospace Conference.

[33]  Andrew D. Greentree,et al.  Diamond for Quantum Computing , 2008, Science.

[34]  Wolfgang Dür,et al.  A quantum network stack and protocols for reliable entanglement-based networks , 2018, New Journal of Physics.

[35]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[36]  March,et al.  Quantum Volume , 2017 .

[37]  K. Bertels,et al.  Mapping of lattice surgery-based quantum circuits on surface code architectures , 2018, Quantum Science and Technology.

[38]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[39]  Frederic T. Chong,et al.  Time-sliced quantum circuit partitioning for modular architectures , 2020, CF.

[40]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[41]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[42]  Margaret Martonosi,et al.  Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[43]  Koen Bertels,et al.  An Experimental Microarchitecture for a Superconducting Quantum Processor , 2017, 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[44]  Ulya R. Karpuzcu,et al.  Benchmarking Quantum Computers and the Impact of Quantum Noise , 2019 .

[45]  G. D’Ariano,et al.  Quantum Tomography , 2003, quant-ph/0302028.

[46]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[47]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[48]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[49]  Ross Duncan,et al.  Application-Motivated, Holistic Benchmarking of a Full Quantum Computing Stack , 2020 .

[50]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[51]  Giuseppe Bianchi,et al.  Quantum internet: from communication to distributed computing! , 2018, NANOCOM.

[52]  Robert Wille,et al.  NISQ circuit compilers: search space structure and heuristics , 2018, ArXiv.

[53]  C. G. Almudever,et al.  Timing and Resource-Aware Mapping of Quantum Circuits to Superconducting Processors , 2019, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[54]  Luca Benini,et al.  Networks on Chips : A New SoC Paradigm , 2022 .

[55]  Margaret Martonosi,et al.  Next Steps in Quantum Computing: Computer Science's Role , 2019, ArXiv.

[56]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[57]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[58]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[59]  Robin Blume-Kohout,et al.  Metrics and Benchmarks for Quantum Processors: State of Play. , 2019 .

[60]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[61]  Julio A. de Oliveira Filho,et al.  A link layer protocol for quantum networks , 2019, SIGCOMM.

[62]  Telecommunications Board,et al.  Quantum computing , 2019, Mathematics and Computation.

[63]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[64]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[65]  Robin Blume-Kohout,et al.  A volumetric framework for quantum computer benchmarks , 2019, Quantum.

[66]  M S Zubairy,et al.  Quantum optical implementation of Grover's algorithm , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[68]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[69]  Robert Wille,et al.  An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[70]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[71]  Naser Mohammadzadeh,et al.  SAQIP , 2019, ACM Trans. Archit. Code Optim..

[72]  Frederic T. Chong,et al.  Datapath and control for quantum wires , 2004, TACO.

[73]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[74]  Ulya R. Karpuzcu,et al.  Quantum Computing: An Overview Across the System Stack , 2019 .