Calcareous sponge biomineralization: ultrastructural and compositional heterogeneity of spicules in Leuconia johnstoni.

[1]  P. Dove,et al.  Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification , 2009, Proceedings of the National Academy of Sciences.

[2]  D. J. Reid,et al.  Observations on the Minute Structure of the Spicules of Calcareous Sponges , 2009 .

[3]  S. Weiner,et al.  Overview of the amorphous precursor phase strategy in biomineralization , 2009 .

[4]  K. Benzerara,et al.  Raman Mapping Using Advanced Line-Scanning Systems: Geological Applications , 2008, Applied spectroscopy.

[5]  G. Wörheide,et al.  Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. , 2008, Micron.

[6]  F. Houlbrèque,et al.  Compositional variations at ultra-structure length scales in coral skeleton , 2008 .

[7]  M. Úriz Mineral skeletogenesis in sponges , 2006 .

[8]  R. Dunbar,et al.  Distribution of magnesium in coral skeleton , 2004 .

[9]  Xavier Turon,et al.  Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions , 2003, Microscopy research and technique.

[10]  M. Manuel,et al.  Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. , 2003, Systematic biology.

[11]  F. Meldrum,et al.  The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies , 2003 .

[12]  Patricia M. Dove,et al.  An Overview of Biomineralization Processes and the Problem of the Vital Effect , 2003 .

[13]  J. Aizenberg,et al.  Coexistence of Amorphous and Crystalline Calcium Carbonate in Skeletal Tissues , 2003, Connective tissue research.

[14]  J. Aizenberg,et al.  Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates , 1996 .

[15]  J. Aizenberg,et al.  Dynamics and growth patterns of calcareous sponge spicules , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  J. Aizenberg,et al.  Biologically Induced Reduction in Symmetry: A Study of Crystal Texture of Calcitic Sponge Spicules , 1995 .

[17]  J. Aizenberg,et al.  Morphogenesis of calcitic sponge spicules: a role for specialized proteins interacting with growing crystals , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  R. Cattaneo-Vietti,et al.  Rate of Spiculogenesis in Clathrina Cerebrum (Porifera: Calcispongiae) Using Tetracycline Marking , 1993, Journal of the Marine Biological Association of the United Kingdom.

[19]  J. Reitner,et al.  Fossil and Recent Sponges , 1991 .

[20]  T. Simpson,et al.  The Cell Biology of Sponges , 1984, Springer New York.

[21]  W. Jones,et al.  Spicule formation in the calcareous sponge Sycon ciliatum , 1977, Cell and Tissue Research.

[22]  W. Jones,et al.  Calcareous sponge spicules: A study of magnesian calcites , 1969, Calcified Tissue Research.

[23]  W. Jones,et al.  An investigation of some calcareous sponge spicules by means of electron probe micro-analysis , 1969 .

[24]  W. Jones Sheath and Axial Filament of Calcareous Sponge Spicules , 1967, Nature.

[25]  K. Chave Aspects of the Biogeochemistry of Magnesium 1. Calcareous Marine Organisms , 1954, The Journal of Geology.

[26]  E. A. Minchin Memoirs: Materials for a Monograph of the Ascons.--I. On the Origin and Growth of the Triradiate and Quadriradiate Spicules in the Family Clathrinidæ , 1908 .

[27]  H. J. Carter I.—A description of two newCalcispongiæ,to which is added confirmation ofProf. James-Clark'sdiscovery of the true form of the sponge-cell (animal), and an account of the polype-like pore-area ofCliona corallinoidescontrasted withProf. E. Häckel'sview on the relationship of the sponges to the corals , 1871 .

[28]  K. Srnnul,et al.  Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study , 2007 .

[29]  J. Unvros,et al.  Characterization of some biogenic carbonates with Raman spectroscopy , 2007 .

[30]  A. Putnis,et al.  Nano-cluster composite structure of calcitic sponge spicules--a case study of basic characteristics of biominerals. , 2006, Journal of inorganic biochemistry.

[31]  J. Stolarski,et al.  Nanostructure of biogenic versus abiogenic calcium carbonate crystals , 2005 .

[32]  J. Susini,et al.  XANES mapping of organic sulfate in three scleractinian coral skeletons , 2003 .

[33]  R. Borojevic,et al.  Order Baerida Borojevic, Boury-Esnault & Vacelet, 2000 , 2002 .

[34]  R. Soest,et al.  Systema Porifera. A Guide to the Classification of Sponges , 2002 .

[35]  N. Boury‐Esnault,et al.  Thesaurus of Sponge Morphology , 1997 .

[36]  J. Aizenberg,et al.  Intracrystalline macromolecules are involved in the morphogenesis of calcitic sponge spicules. , 1996, Connective tissue research.

[37]  R. Cattaneo-Vietti,et al.  Rate of spiculogenesis in some common Mediterranean Calcispongiae: A tetracycline and 45Ca++ labelling study , 1994 .

[38]  W. Jones,et al.  On the Structure of Calcareous Sponge Spicules , 1991 .

[39]  P. Ledger Septate junctions in the calcareous sponge Sycon ciliatum. , 1975, Tissue & cell.

[40]  P. Ledger Types of collagen fibres in the calcareous sponges Sycon and Leucandra. , 1974, Tissue & cell.

[41]  W. Jones,et al.  Examination of the large triacts of the calcareous sponge Leuconia nivea grant by scanning electron microscopy , 1971 .

[42]  R. Ebner Über den feineren Bau der Skelettheile der Kalkschwämme nebst Bemerkungen über Kalkskelete überhaupt , 2022 .