Constraints on the Lithospheric Kinematics in the Aegean and Western Anatolia Unveiled by SKS Splitting Observations

The present study investigates azimuthal anisotropy and its relation to the geodynamical processes beneath the back‐arc of the Hellenic subduction zone in the eastern Aegean and western Anatolia where surface tectonics is dominated by the right‐lateral strike‐slip North Anatolian Fault Zone (NAFZ) in the north and E‐W oriented normal fault systems. We obtained apparent SKS splitting parameters from 1,660 good quality and 137 null measurements extracted from 542 events recorded at 40 permanent broadband seismic stations. Overall, the station‐averaged splitting parameters indicate NNE‐SSW oriented fast directions (∼N20°E) and splitting delays around ∼1.5 s. The large splitting delays, particularly observed beneath the northern Aegean can be explained by either an enlarged mantle wedge thickness or increased strength of upper mantle anisotropy. We constrain complex anisotropy structures within two layer models from notable backazimuthal variations in individual splitting measurements observed beneath a few stations at the north located in a close proximity to the NAFZ and central‐western Anatolia. At the western end of the NAFZ, our estimated upper layer anisotropy direction (at ∼120 km) is rather parallel to the NAFZ reflecting the imprint of a lithospheric petrofabric formed by recent deformation while in central‐western Anatolia they correlate well with maximum shear directions and small splitting delays (∼0.6 s) appear to further support relatively thin lithosphere (∼90 km). An overall pattern of extension‐parallel fast directions (N10°E) within lower layer can be attributed to the slab rollback‐induced mantle flow that is highly oblique with respect to the WSW‐ward motion of the Anatolian lithosphere.

[1]  R. Bell,et al.  The Influence of the North Anatolian Fault and a Fragmenting Slab Architecture on Upper Mantle Seismic Anisotropy in the Eastern Mediterranean , 2021 .

[2]  S. Barbot,et al.  Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia , 2021 .

[3]  M. Aktar,et al.  Orientations of Broadband Stations of the KOERI Seismic Network (Turkey) from Two Independent Methods: P- and Rayleigh-Wave Polarization , 2021 .

[4]  D. McKenzie The structure of the lithosphere and upper mantle beneath the Eastern Mediterranean and Middle East , 2020, Mediterranean Geoscience Reviews.

[5]  Zhouchuan Huang,et al.  Isotropic and Anisotropic P Wave Velocity Structures of the Crust and Uppermost Mantle Beneath Turkey , 2020, Journal of Geophysical Research: Solid Earth.

[6]  C. Braham,et al.  Seismic Tomographic Imaging of the Eastern Mediterranean Mantle: Implications for Terminal‐Stage Subduction, the Uplift of Anatolia, and the Development of the North Anatolian Fault , 2020, Geochemistry, Geophysics, Geosystems.

[7]  M. Bezada,et al.  Influence of Upper Mantle Anisotropy on Isotropic P‐Wave Tomography Images Obtained in the Eastern Mediterranean Region , 2019, Journal of Geophysical Research: Solid Earth.

[8]  I. Artemieva,et al.  Geodynamics of Anatolia: Lithosphere Thermal Structure and Thickness , 2019, Tectonics.

[9]  Wei Wei,et al.  Mantle Dynamics of the Eastern Mediterranean and Middle East: Constraints From P‐Wave Anisotropic Tomography , 2019, Geochemistry, Geophysics, Geosystems.

[10]  P. Wessel,et al.  Global Bathymetry and Topography at 15 Arc Sec: SRTM15+ , 2019, Earth and Space Science.

[11]  F. Schneider,et al.  Seismic Anisotropy Beneath the Pamir and the Hindu Kush: Evidence for Contributions From Crust, Mantle Lithosphere, and Asthenosphere , 2018, Journal of Geophysical Research: Solid Earth.

[12]  G. Drakatos,et al.  Mantle dynamics beneath Greece from SKS and PKS seismic anisotropy study , 2018, Acta Geophysica.

[13]  M. Hearne,et al.  Slab2, a comprehensive subduction zone geometry model , 2018, Science.

[14]  M. Faccenda,et al.  Numerical simulation of 3-D mantle flow evolution in subduction zone environments in relation to seismic anisotropy beneath the eastern Mediterranean region , 2018, Earth and Planetary Science Letters.

[15]  L. Jolivet,et al.  Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction , 2018, Tectonics.

[16]  G. Zandt,et al.  Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia , 2018 .

[17]  A. Licciardi,et al.  Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation , 2018 .

[18]  C. Evangelidis Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow , 2017 .

[19]  M. Salah,et al.  Complex seismic anisotropy and mantle dynamics beneath Turkey , 2017 .

[20]  A. Fichtner,et al.  3-D crustal velocity structure of western Turkey: Constraints from full-waveform tomography , 2017 .

[21]  Bizhan Abgarmi,et al.  M‐Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear‐Wave Splitting , 2017 .

[22]  F. Tilmann,et al.  Investigation of mantle kinematics beneath the Hellenic-subduction zone with teleseismic direct shear waves , 2016 .

[23]  M. Erduran,et al.  Melt in the mantle and seismic azimuthal anisotropy: evidence from Anatolia , 2016 .

[24]  Laura Schweitzer,et al.  Seismic Anisotropy In The Earth , 2016 .

[25]  S. Stiros,et al.  Fault slip source models for the 2014 Mw 6.9 Samothraki‐Gökçeada earthquake (North Aegean Trough) combining geodetic and seismological observations , 2015 .

[26]  F. Tilmann,et al.  Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions , 2015 .

[27]  K. Ward,et al.  Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey , 2015 .

[28]  F. Tilmann,et al.  The Use of Direct Shear Waves in Quantifying Seismic Anisotropy: Exploiting Regional Arrays , 2014 .

[29]  C. Helvaci,et al.  Earthquake mechanisms in the Gulfs of Gökova, Sığacık, Kuşadası, and the Simav Region (western Turkey): Neotectonics, seismotectonics and geodynamic implications , 2014 .

[30]  S. Yolsal-Çevikbilen Seismic anisotropy along the Cyprean arc and northeast Mediterranean Sea inferred from shear wave splitting analysis , 2014 .

[31]  J. van Hunen,et al.  Dynamics of lithospheric thinning and mantle melting by edge‐driven convection: Application to Moroccan Atlas mountains , 2014 .

[32]  M. Behn,et al.  Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance , 2014 .

[33]  A. Paul,et al.  A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region , 2014 .

[34]  Wenjin Zhao,et al.  Seismic Anisotropy from SKS Splitting beneath Northeastern Tibet , 2013 .

[35]  A. Fichtner,et al.  The deep structure of the North Anatolian Fault Zone , 2013 .

[36]  A. Paul,et al.  Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia , 2013 .

[37]  Paul Lundgren,et al.  Fault‐Slip Source Models for the 2011 M 7.1 Van Earthquake in Turkey from SAR Interferometry, Pixel Offset Tracking, GPS, and Seismic Waveform Analysis , 2013 .

[38]  Andreas Fichtner,et al.  Multiscale full waveform inversion , 2013 .

[39]  L. Jolivet,et al.  Aegean tectonics: Strain localisation, slab tearing and trench retreat , 2013 .

[40]  E. Saygin,et al.  Moho structure of the anatolian plate from receiver function analysis , 2013 .

[41]  J. Nocquet Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results , 2012 .

[42]  A. Paul,et al.  High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper-mantle structure , 2012 .

[43]  M. Özeren Crust-mantle mechanical coupling in Eastern Mediterranean and eastern Turkey. , 2012, Proceedings of the National Academy of Sciences of the United States of America.

[44]  John Chen,et al.  Significant and vertically coherent seismic anisotropy beneath eastern Tibet , 2012 .

[45]  T. Taymaz,et al.  Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean , 2012 .

[46]  G. Zandt,et al.  3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography , 2012 .

[47]  H. Karabulut,et al.  Anisotropic Pn tomography of Turkey and adjacent regions , 2011 .

[48]  C. Demets,et al.  Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame , 2011 .

[49]  C. Evangelidis,et al.  Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations , 2011 .

[50]  G. Zandt,et al.  Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography , 2011 .

[51]  B. Endrun,et al.  Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy , 2011 .

[52]  Juan Li,et al.  Component azimuths of the CEArray stations estimated from P-wave particle motion , 2011 .

[53]  M. Özeren,et al.  The dynamics of the eastern Mediterranean and eastern Turkey , 2010 .

[54]  Jeffrey Park,et al.  Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy , 2010 .

[55]  G. Zandt,et al.  Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone , 2010 .

[56]  Xavier Le Pichon,et al.  The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics , 2010 .

[57]  G. Barruol,et al.  Upper mantle deformation beneath the North American–Pacific plate boundary in California from SKS splitting , 2010 .

[58]  K. Priestley,et al.  Shear-wave splitting, lithospheric anisotropy, and mantle deformation beneath the Arabia–Eurasia collision zone in Iran , 2009 .

[59]  L. Jolivet,et al.  From mantle to crust: Stretching the Mediterranean , 2009 .

[60]  D. Kohlstedt,et al.  Shearing Melt Out of the Earth: An Experimentalist's Perspective on the Influence of Deformation on Melt Extraction , 2009 .

[61]  L. Vecsey,et al.  Shear-wave splitting measurements — Problems and solutions , 2008 .

[62]  J. Brun,et al.  Exhumation of high-pressure rocks driven by slab rollback , 2008 .

[63]  Philip Skemer,et al.  Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies , 2008 .

[64]  G. Barruol,et al.  Upper-mantle flow beneath French Polynesia from shear wave splitting , 2007 .

[65]  D. Whitney,et al.  Interpretation of tectonic versus magmatic processes for resetting apatite fission track ages in the Niğde Massif, Turkey , 2007 .

[66]  Y. Dilek,et al.  The geodynamics of the Aegean and Anatolia: introduction , 2007 .

[67]  K. Priestley,et al.  Lithospheric structure of the Aegean obtained from P and S receiver functions , 2006 .

[68]  M. Fouch,et al.  Seismic anisotropy beneath stable continental interiors , 2006 .

[69]  Carsten Riedel,et al.  International Handbook of Earthquake and Engineering Seismology , 2006 .

[70]  C. Hollenstein,et al.  PLATE TECTONIC FRAMEWORK AND GPSDERIVED STRAIN-RATE FIELD WITHIN THE BOUNDARY ZONES OF THE EURASIAN AND AFRICAN PLATES , 2006 .

[71]  Demitris Paradissis,et al.  GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions , 2005 .

[72]  G. Bokelmann,et al.  Shear‐wave splitting around the Eifel hotspot: evidence for a mantle upwelling , 2005 .

[73]  Claude Rangin,et al.  THE NORTH ANATOLIAN FAULT: A NEW LOOK , 2005 .

[74]  P Goldstein,et al.  SAC Availability for the IRIS Community , 2005 .

[75]  J. Brun,et al.  Aegean crustal thickness inferred from gravity inversion. Geodynamical implications , 2004 .

[76]  R. Reilinger,et al.  Active faulting and crustal deformation in the Eastern Mediterranean region , 2004 .

[77]  Xavier Le Pichon,et al.  Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data , 2004 .

[78]  M. van der Baan,et al.  Automation of Shear-Wave Splitting Measurements using Cluster Analysis , 2004 .

[79]  D. Giardini,et al.  Teleseismic delay times and shear-wave splitting in the mediterranean region , 2004 .

[80]  A. Al-Lazki,et al.  Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern Turkey) and the surrounding regions , 2003 .

[81]  E. Zor,et al.  Shear wave splitting in a young continent‐continent collision: An example from Eastern Turkey , 2003 .

[82]  G. Bock,et al.  Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy , 2003, Nature.

[83]  J. Vidale,et al.  Near‐fault anisotropy following the Hector Mine earthquake , 2003 .

[84]  D. Kohlstedt,et al.  Melt Segregation and Strain Partitioning: Implications for Seismic Anisotropy and Mantle Flow , 2003, Science.

[85]  Andrea Morelli,et al.  P wave tomography of the mantle under the Alpine-Mediterranean area , 2003 .

[86]  Simon McClusky,et al.  GPS constraints on Africa (Nubia) and Arabia plate motions , 2003 .

[87]  A. Al-Lazki,et al.  Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates , 2002 .

[88]  H. Kanamori,et al.  Anisotropy beneath California: shear wave splitting measurements using a dense broadband array , 2002 .

[89]  K. Priestley,et al.  Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation , 2001 .

[90]  S. Karato,et al.  Water-Induced Fabric Transitions in Olivine , 2001, Science.

[91]  L. Jolivet,et al.  Mediterranean extension and the Africa‐Eurasia collision , 2000 .

[92]  Demitris Paradissis,et al.  Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus , 2000 .

[93]  M. Savage Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .

[94]  A. Okay,et al.  Tethyan sutures of northern Turkey , 1999, Geological Society, London, Special Publications.

[95]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[96]  M. D. Bona Variance estimate in frequency-domain deconvolution for teleseismic receiver function computation , 1998 .

[97]  K. Priestley,et al.  Variations in the crustal structure beneath western Turkey , 1998 .

[98]  D. L. Anderson,et al.  Edge-driven convection , 1998 .

[99]  Paul G. Silver,et al.  Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations , 1998 .

[100]  P. Meijer,et al.  Present‐day dynamics of the Aegean region: A model analysis of the horizontal pattern of stress and deformation , 1997 .

[101]  R. Reilinger,et al.  Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data , 1997 .

[102]  J. Revenaugh,et al.  Cumulative offset of the San Andreas fault in central California: A seismic approach , 1997 .

[103]  T. Taymaz S-P-wave traveltime residuals from earthquakes and lateral inhomogeneity in the upper mantle beneath the Aegean and the Hellenic Trench near Crete , 1996 .

[104]  G. Grünthal,et al.  Upper mantle anisotropy beneath central Europe from SKS wave splitting: Effects of absolute plate motion and lithosphere-asthenosphere boundary topography? , 1996 .

[105]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[106]  S. Karato,et al.  Lattice preferred orientation of olivine aggregates deformed in simple shear , 1995, Nature.

[107]  P. Silver,et al.  The Interpretation of Shear‐Wave Splitting Parameters In the Presence of Two Anisotropic Layers , 1994 .

[108]  Stuart Crampin,et al.  The fracture criticality of crustal rocks , 1994 .

[109]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[110]  A. Milev,et al.  Global patterns of azimuthal anisotropy and deformations in the continental mantle , 1992 .

[111]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[112]  James Jackson,et al.  Active tectonics of the north and central Aegean Sea , 1991 .

[113]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[114]  J. Jackson,et al.  Earthquake mechanisms in the Hellenic Trench near Crete , 1990 .

[115]  J. Mascle,et al.  Shallow structure and recent evolution of the Aegean Sea: A synthesis based on continuous reflection profiles , 1990 .

[116]  Carlo Laj,et al.  The Tertiary geodynamical evolution of the Aegean arc: a paleomagnetic reconstruction , 1988 .

[117]  S. Karato Seismic anisotropy due to lattice preferred orientation of minerals: Kinematic or dynamic? , 2013 .

[118]  A. Şengör,et al.  Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study , 1985 .

[119]  X. Pichon,et al.  The hellenic arc and trench system: A key to the neotectonic evolution of the eastern mediterranean area , 1979 .

[120]  D. McKenzie,et al.  Some remarks on the development of sedimentary basins , 1978 .

[121]  M. F. Ashby,et al.  On the rheology of the upper mantle , 1973 .

[122]  D. McKenzie Active Tectonics of the Mediterranean Region , 1972 .