Accelerated Uzawa methods for convex optimization
暂无分享,去创建一个
Xiaoming Yuan | Min Tao | Xiaoming Yuan | M. Tao | X. Yuan
[1] Jian-Feng Cai,et al. Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..
[2] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[3] Raymond H. Chan,et al. Journal of Computational and Applied Mathematics a Reduced Newton Method for Constrained Linear Least-squares Problems , 2022 .
[4] James H. Bramble,et al. The Lagrange multiplier method for Dirichlet’s problem , 1981 .
[5] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[6] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[7] Stanley Osher,et al. A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..
[8] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[9] Wotao Yin,et al. Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..
[10] D. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method , 1974, CDC 1974.
[11] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[12] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[13] Hui Zhang,et al. Strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis , 2011, ArXiv.
[14] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[15] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[16] Mingqiang Zhu,et al. An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .
[17] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.
[18] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[19] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[20] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[21] Marc Teboulle,et al. Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..
[22] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[23] M. Hestenes. Multiplier and gradient methods , 1969 .
[24] Jian-Feng Cai,et al. Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..
[25] Raymond H. Chan,et al. Constrained Total Variation Deblurring Models and Fast Algorithms Based on Alternating Direction Method of Multipliers , 2013, SIAM J. Imaging Sci..
[26] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[27] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[28] Rachid Deriche,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004 .
[29] ANTONIN CHAMBOLLE,et al. An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.
[30] B. V. Dean,et al. Studies in Linear and Non-Linear Programming. , 1959 .
[31] Bin Dong,et al. Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.
[32] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[33] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[34] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[35] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[36] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[37] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[38] G. M. Korpelevich. The extragradient method for finding saddle points and other problems , 1976 .
[39] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[40] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[41] Tony F. Chan,et al. A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..
[42] Constantin Bacuta,et al. A Unified Approach for Uzawa Algorithms , 2006, SIAM J. Numer. Anal..
[43] Marc Teboulle,et al. Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.
[44] Bingsheng He,et al. Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..
[45] Raymond H. Chan,et al. Affine Scaling Methods for Image Deblurring Problems , 2010 .
[46] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .