In situ study of the relevance of bacterial adherence to feed particles for the contamination and accuracy of rumen degradability estimates for feeds of vegetable origin

An in situ study was conducted on four rumen-cannulated wethers to determine (using 15N infusion techniques) the microbial contamination (mg bacterial DM or crude protein (CP)/100mg DM or CP) and the associated error on the effective degradability of fourteen feeds: barley and maize grains, soyabean and sunflower meals, full-fat soyabean, maize gluten feed, soyabean hulls, brewers dried grains, sugarbeet pulp, wheat bran, lucerne and vetch-oat hays, and barley and lentil straws. The DM or CP contamination in residues (M) fitted to single exponential or sigmoid curves. A general model (M=m (1−e−ft)j) was proposed to match this fit. Asymptotic values (m) varied from 2·84% to 13·3% and from 2·85% to 80·9% for DM and CP, respectively. Uncorrected results underestimated the effective degradability of both DM (P<0·05) and CP (P<0·01). For CP, this underestimation varied from 0·59% to 13·1%, with a higher but unascertainable error for barley straw. Excluding maize grain, the microbial contamination of both DM and CP, and the associated underestimation of the effective degradability of CP, were positively related to the cellulose content of the feed. The error in the effective degradability of CP was also negatively related to the CP content and its apparent effective degradability (R2 0·867). This equation allows easier and more accurate estimates of effective degradability, needed to improve protein-rationing systems.

[1]  Javier González,et al.  Effects of considering the rate of comminution of particles and microbial contamination on accuracy of in situ studies of feed protein degradability in ruminants , 2006 .

[2]  R. Redondo,et al.  Effects of feed intake on composition of sheep rumen contents and their microbial population size , 2003, British Journal of Nutrition.

[3]  C. Centeno,et al.  Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. , 2000, The British journal of nutrition.

[4]  R. Caballero,et al.  Nutritive value of on-farm common vetch-oat hays. II. Ruminal degradability of dry matter and crude protein , 2000 .

[5]  M. Alvir,et al.  Estimation of intestinal digestibility of undegraded sunflower meal protein from nylon bag measurements. A mathematical model. , 1999, Reproduction, nutrition, development.

[6]  M. Carro,et al.  Rumen degradability and intestinal digestibility of brewers' grains as affected by origin and heat treatment and of barley rootlets , 1998 .

[7]  G. Jones,et al.  Microbial attachment and feed digestion in the rumen. , 1994, Journal of animal science.

[8]  J. Huber,et al.  Influence of microbial colonization of feed particles on determination of nitrogen degradability by in situ incubation. , 1993, Journal of animal science.

[9]  R. Valadares,et al.  Bacterial contamination in feed residue after ruminal incubation in nylon bags , 1992 .

[10]  P. V. Soest,et al.  Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. , 1991, Journal of dairy science.

[11]  D. Major,et al.  Effect of ruminal microbial colonization on cereal grain digestion. , 1990 .

[12]  J. Nocek In situ and Other Methods to Estimate Ruminal Protein and Energy Digestibility: A Review , 1988 .

[13]  A. L. Grant,et al.  Characterization of in situ nitrogen and fiber digestion and bacterial nitrogen contamination of hay crop forages preserved at different dry matter percentages. , 1987, Journal of animal science.

[14]  L. Rooney,et al.  Factors affecting starch digestibility with special emphasis on sorghum and corn. , 1986, Journal of animal science.

[15]  T. Varvikko Microbially corrected amino acid composition of rumen-undegraded feed protein and amino acid degradability in the rumen of feeds enclosed in nylon bags , 1986, British Journal of Nutrition.

[16]  J. Lindberg,et al.  Estimation of microbial nitrogen in nylon-bag residues by feed 15N dilution , 1985, British Journal of Nutrition.

[17]  R. Huggett Mathematical models in agriculture: France, J. and Thornley, J.H.M. London: Butterworths, 1984. 335 pp. £35 hardback , 1985 .

[18]  John Asafu-Adjaye,et al.  Mathematical Models in Agriculture , 1984 .

[19]  J. Rooke,et al.  The effect of in sacco rumen incubation of a grass silage upon the total and D-amino acid composition of the residual silage dry matter , 1984, The Journal of Agricultural Science.

[20]  R. Merry,et al.  A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta , 1983, British Journal of Nutrition.

[21]  A. Chesson,et al.  Influence of Plant Phenolic Acids on Growth and Cellulolytic Activity of Rumen Bacteria , 1982, Applied and environmental microbiology.

[22]  J. Mathers,et al.  Direct estimation of the extent of contamination of food residues by microbial matter after incubation within synthetic fibre bags in the rumen , 1981, The Journal of Agricultural Science.

[23]  L. H. Harbers,et al.  Microbial degradation of smooth brome and tall fescue observed by scanning electron microscopy. , 1980 .

[24]  E. R. Ørskov,et al.  The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage , 1979, The Journal of Agricultural Science.

[25]  D. E. Akin Microscopic evaluation of forage digestion by rumen microorganisms--a review. , 1979, Journal of animal science.

[26]  R.,et al.  A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta , 2005 .

[27]  Javier González,et al.  Relationship between in situ rumen protein degradability and chemical composition of alfalfa hays , 1999 .

[28]  C. W. Forsberg,et al.  Polysaccharide degradation by rumen microorganisms , 1997 .

[29]  Y. Beckers,et al.  Studies on the in situ nitrogen degradability corrected for bacterial contamination of concentrate feeds in steers. , 1995, Journal of animal science.

[30]  T. Mcallister,et al.  Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. , 1993, Journal of animal science.

[31]  É. François,et al.  Étude de la contamination microbienne et de la dégradabilité ruminale in sacco des matières azotées de 2 variétés de ray-grass italien marquées au moyen de 15N et récoltées à 2 stades végétatifs , 1993 .

[32]  Kenneth Helrick,et al.  Official methods of analysis , 1990 .

[33]  L. Bernard,et al.  Colonisation bactérienne de différents types d'aliments incubés in sacco dans le rumen ; conséquences pour l'estimation de la dégradabilité de l'azote , 1988 .

[34]  J. Jamot,et al.  Colonisation bactérienne des résidus alimentaires des sachets incubés dans le rumen : utilisation du « stomacher » pour la réduire et conséquences sur la mesure de la dégradabilité ruminale de l'azote , 1988 .

[35]  É. Grenet,et al.  Etude microscopique de la digestion des parois végétales des téguments de soja et de colza dans le rumen , 1987 .

[36]  R. Koch Ed.: S. Williams: Official Methods of Analysis. 14. Auflage, Arlington, Va., Publ. Assoc. Official Analytical Chemists, INC, 1984, 1141 S., US $ 151.50 , 1986 .

[37]  D. Dinsdale,et al.  Electron microscopy of bacteria involved in the digestion of plant cell walls , 1984 .

[38]  W. P. T. James,et al.  The Analysis of dietary fiber in food , 1981 .