Chow groups of surfaces of lines in cubic fourfolds

The surface of lines in a cubic fourfold intersecting a fixed line splits motivically into two parts, one of which resembles a K3 surface. We define the analogue of the Beauville-Voisin class and study the push-forward map to the Fano variety of all lines with respect to the natural splitting of the Bloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.

[1]  D. Huybrechts The Geometry of Cubic Hypersurfaces , 2023 .

[2]  D. Huybrechts,et al.  Nodal quintic surfaces and lines on cubic fourfolds , 2021, 2108.10532.

[3]  A. Kouvidakis,et al.  On some invariants of cubic fourfolds , 2020, European Journal of Mathematics.

[4]  Junliang Shen,et al.  $K3$ CATEGORIES, ONE-CYCLES ON CUBIC FOURFOLDS, AND THE BEAUVILLE–VOISIN FILTRATION , 2017, Journal of the Institute of Mathematics of Jussieu.

[5]  Junliang Shen,et al.  Derived categories of $K3$ surfaces, O’Grady’s filtration, and zero-cycles on holomorphic symplectic varieties , 2017, Compositio Mathematica.

[6]  D. Huybrechts Lectures on K3 Surfaces , 2016 .

[7]  C. Voisin Remarks And Questions On Coisotropic Subvarieties and 0-Cycles of Hyper-Kähler Varieties , 2015, 1501.02984.

[8]  Charles Vial,et al.  The Fourier Transform for Certain HyperKähler Fourfolds , 2013, Memoirs of the American Mathematical Society.

[9]  D. Huybrechts,et al.  Curves and cycles on K3 surfaces , 2013, 1303.4564.

[10]  M. Shen Surfaces with involution and Prym constructions , 2012, 1209.5457.

[11]  C. Voisin Remarks on filtrations on Chow groups and the Bloch conjecture , 2004 .

[12]  A. Beauville Algebraic Cycles and Motives: On the Splitting of the Bloch–Beilinson Filtration , 2004, math/0403356.

[13]  A. Beauville ON THE CHOW RING OF A K3 SURFACE , 2001, math/0109063.

[14]  E. Izadi A Prym Construction for the Cohomology of a Cubic Hypersurface , 1997, alg-geom/9701012.

[15]  S. Saito Motives and filtrations on Chow groups , 1996 .

[16]  M. Nori Algebraic cycles and Hodge theoretic connectivity , 1993 .

[17]  C. Voisin Théorème de Torelli pour les cubiques de ℙ5 , 1986 .

[18]  W. Seaman On surfaces in , 1985 .

[19]  V. Srinivas,et al.  REMARKS ON CORRESPONDENCES AND ALGEBRAIC CYCLES , 1983 .

[20]  A. A. Rojtman The Torsion of the Group of 0-Cycles Modulo Rational Equivalence , 1980 .

[21]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[22]  D. Eisenbud,et al.  3264 and all that , 2016 .

[23]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[24]  C. Voisin Théorie de Hodge et géomětrie algěbrique complexe , 2002 .

[25]  C. Voisin Complex Projective Geometry: Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes , 1992 .

[26]  H. Saito Generalization of Abel's theorem and some finiteness property of zero-cycles on surfaces , 1992 .