Probing angle-dependent thermal conductivity in twisted bilayer MoSe2

[1]  Bingchao Yang,et al.  Enhanced Thermoelectric Performance in Black Phosphorene via Tunable Interlayer Twist. , 2022, Small.

[2]  Madhubanti Mukherjee,et al.  Decoupled atomic contribution boosted high thermoelectric performance in mixed cation spinel oxides ACo2O4 , 2022, Applied Physics Letters.

[3]  Baoxing Xu,et al.  Experimental and Computational Investigation of Layer-Dependent Thermal Conductivities and Interfacial Thermal Conductance of One- to Three-Layer WSe2. , 2021, ACS applied materials & interfaces.

[4]  A. Singh,et al.  Anisotropic Interlayer Exciton in GeSe/SnS van der Waals Heterostructure. , 2021, The journal of physical chemistry letters.

[5]  Manavendra P. Singh,et al.  Study of Thermometry in Two-Dimensional Sb2Te3 from Temperature-Dependent Raman Spectroscopy , 2021, Nanoscale Research Letters.

[6]  M. Bramini,et al.  2D materials in electrochemical sensors for in vitro or in vivo use , 2020, Analytical and Bioanalytical Chemistry.

[7]  A. Singh,et al.  Strong Chemical Bond Hierarchy Leading to Exceptionally High Thermoelectric Figure of Merit in Oxychalcogenide AgBiTeO. , 2020, ACS applied materials & interfaces.

[8]  S. Banerjee,et al.  Stacking‐Order‐Driven Optical Properties and Carrier Dynamics in ReS2 , 2020, Advanced materials.

[9]  F. Khoeini,et al.  Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation , 2019, 1906.04696.

[10]  M. Lei,et al.  Recent Advances in the Functional 2D Photonic and Optoelectronic Devices , 2018, Advanced Optical Materials.

[11]  Madhubanti Mukherjee,et al.  High Thermoelectric Figure of Merit via Tunable Valley Convergence Coupled Low Thermal Conductivity in AIIBIVC2V Chalcopyrites , 2018, The Journal of Physical Chemistry C.

[12]  Qi Jie Wang,et al.  Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics , 2018, Nature Communications.

[13]  Hui‐Ming Cheng,et al.  Graphene: a promising 2D material for electrochemical energy storage. , 2017, Science bulletin.

[14]  A. Jang,et al.  Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.

[15]  B. Sumpter,et al.  Twisted MoSe₂ Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy. , 2016, ACS nano.

[16]  Haluk Yapicioglu,et al.  Thermal transport properties of MoS2 and MoSe2 monolayers , 2016, Nanotechnology.

[17]  Yuerui Lu,et al.  Exciton and Trion Dynamics in Bilayer MoS2. , 2015, Small.

[18]  J. Hone,et al.  Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. , 2015, ACS applied materials & interfaces.

[19]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[20]  Baoling Huang,et al.  Thermal conductivity of graphene mediated by strain and size , 2015, 1506.08380.

[21]  B. Sumpter,et al.  Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. , 2015, ACS nano.

[22]  U. Schwingenschlögl,et al.  Thermoelectric Response of Bulk and Monolayer MoSe2 and WSe2 , 2015 .

[23]  Ronggui Yang,et al.  Phonon Transport in Single-Layer Transition Metal Dichalcogenides: a First-Principles Study , 2014, 1407.3758.

[24]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[25]  J. Simpson,et al.  Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. , 2014, ACS nano.

[26]  Heung Cho Ko,et al.  Flexible Electronics: Highly Flexible and Transparent Multilayer MoS2 Transistors with Graphene Electrodes (Small 19/2013) , 2013 .

[27]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[28]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[29]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[30]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[31]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[32]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[33]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[34]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[35]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[36]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[37]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[38]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[39]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[40]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[41]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[42]  Samuel Graham,et al.  Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy. , 2007, The Review of scientific instruments.

[43]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[44]  Walter A. Harrison,et al.  Electrons and Phonons , 2000 .

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  R. Cowley THE LATTICE DYNAMICS OF AN ANHARMONIC CRYSTAL , 1963 .

[47]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[48]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .