Fourier Transform Infrared Spectroscopy for Natural Fibres

Infrared spectroscopy is nowadays one of the most important analytical techniques available to scientists. One of the greatest advantages of the infrared spectroscopy is that virtually any sample in any state may be analyzed. For example, liquids, solutions, pastes, powders, films, fibres, gases and surfaces can all be examined with a judicious choice of sampling technique. The review by Annette, Sudhakar, Ursula and Andrea [1-2] also demonstrates the applicability of dispersion infrared spectroscopy for natural fibres studies.

[1]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[2]  Sabu Thomas,et al.  A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites , 2005 .

[3]  Ursula Kües,et al.  Wood production, wood technology, and biotechnological impacts , 2007 .

[4]  Thomas Heinze,et al.  Comprehensive cellulose chemistry. Volume 1: Fundamentals and analytical methods. , 1998 .

[5]  M. Ansell,et al.  The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement , 1999 .

[6]  R. Manley,et al.  Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose , 1994 .

[7]  H. L. Hergert,et al.  The Infrared Spectra of Lignin and Related Compounds. I. Characteristic Carbonyl and Hydroxyl Frequencies of Some Flavanones, Flavones, Chalcones and Acetophenones1 , 1953 .

[8]  L. Salmén,et al.  Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR , 2009 .

[9]  A. Sarko,et al.  Packing Analysis of Carbohydrates and Polysaccharides. 11. Molecular and Crystal Structure of Native Ramie Cellulose , 1980 .

[10]  B. Hinterstoisser,et al.  Two-Dimensional Fourier Transform Infrared Spectroscopy Applied to Cellulose and Paper , 2004 .

[11]  Shoichiro Yano,et al.  Effect of hydrogen bond formation on dynamic mechanical properties of amorphous cellulose , 1976 .

[12]  D. Himmelsbach,et al.  FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. , 1998, Cellular and molecular biology.

[13]  M. L. Nelson,et al.  Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose , 1964 .

[14]  B. Hinterstoisser,et al.  Application of dynamic 2D FTIR to cellulose , 2000 .

[15]  Tetsuo Kondo,et al.  A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose , 1996 .

[16]  K. Gardner,et al.  The hydrogen bonding in native cellulose. , 1974, Biochimica et biophysica acta.

[17]  J. Mann,et al.  Infrared spectra of the crystalline modifications of cellulose , 1956 .

[18]  M. Gupta,et al.  FT-IR microscopic studies on coupling agents: treated natural fibres , 2000 .

[19]  Tetsuo Kondo,et al.  The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives , 1997 .

[20]  R. Marchessault,et al.  Packing analysis of carbohydrates and polysaccharides. Part 14. Triple-helical crystalline structure of curdlan and paramylon hydrates , 1983 .

[21]  David Ibarra,et al.  Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR , 2007 .

[22]  Paul Gatenholm,et al.  The nature of adhesion in composites of modified cellulose fibers and polypropylene , 1991 .

[23]  J. Mann,et al.  Crystalline modifications of cellulose. Part II. A study with plane‐polarized infrared radiation , 1958 .

[24]  D. Fengel,et al.  Characterization of Cellulose by Deconvoluting the OH Valency Range in FTIR Spectra , 1992 .

[25]  A. J. Michell Second derivative F.t.-i.r. spectra of celluloses I and II and related mono- and oligo-saccharides , 1988 .

[26]  Y. Ozaki,et al.  Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose. , 2002, Biopolymers.

[27]  E. Sjöström,et al.  Wood Chemistry: Fundamentals and Applications , 1981 .

[28]  G. Greathouse,et al.  Infrared Spectra of Bacterial Cellulose , 1952 .

[29]  T. Kondo Hydrogen Bonds in Cellulose and Cellulose Derivatives , 2004 .

[30]  E. Klein,et al.  Replacing Hydroxyl Groups in Cotton Cellulose , 1958 .

[31]  M. Misra,et al.  Characterization of natural fiber surfaces and natural fiber composites , 2008 .

[32]  Lina Zhang,et al.  Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution , 2004 .

[33]  Peiyi Wu,et al.  Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy , 2008 .

[34]  Tetsuo Kondo,et al.  FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation , 1998 .

[35]  A. J. Michell Second-derivative F.t.-i.r. spectra of native celluloses , 1990 .

[36]  D. Himmelsbach,et al.  The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems† , 2002 .

[37]  B. Hinterstoisser,et al.  Two‐dimensional step‐scan FTIR: a tool to unravel the OH‐valency‐range of the spectrum of Cellulose I , 1999 .

[38]  A. Stipanovic,et al.  Packing Analysis of Carbohydrates and Polysaccharides. 6. Molecular and Crystal Structure of Regenerated Cellulose II , 1976 .

[39]  Masamichi Kobayashi,et al.  THEORETICAL EVALUATION OF THREE-DIMENSIONAL ELASTIC CONSTANTS OF NATIVE AND REGENERATED CELLULOSES : ROLE OF HYDROGEN BONDS , 1991 .

[40]  F. Nord,et al.  Investigations on Lignin and Lignification. VIII.1 Isolation and Characterization of Bagasse Native Lignin , 1951 .

[41]  F. Nord,et al.  Investigations on Lignin and Lignification. IV. Studies on Hardwood Lignin , 1951 .

[42]  D. Fengel,et al.  Influence of the Alkali Concentration on the Formation of Cellulose II. Study by X-Ray Diffraction and FTIR Spectroscopy , 1995 .

[43]  V. Ivanov,et al.  Investigation of some oxidation reactions of cellulose by infrared spectroscopy , 1958 .

[44]  T. Kondo Hydrogen bonds in regioselectively substituted cellulose derivatives , 1994 .

[45]  R. Marchessault,et al.  Infrared spectra of crystalline polysaccharides. VI. Effect of orientation on the tilting spectra of chitin films. , 1960, Biochimica et biophysica acta.

[46]  M. Fan,et al.  Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy , 2011 .

[47]  T. Kondo,et al.  Intermolecular hydrogen bonding in cellulose/poly(ethylene oxide) blends: thermodynamic examination using 2,3-di-O- and 6-O-methylcelluloses as cellulose model compounds , 1994 .

[48]  Carmen-Mihaela Popescu,et al.  Spectral Characterization of Eucalyptus Wood , 2007, Applied spectroscopy.

[49]  T. Kondo The assignment of IR absorption bands due to free hydroxyl groups in cellulose , 1997, Cellulose.

[50]  S. Nishikawa,et al.  Transmission of X-Rays through Fibrous, Lamellar and Granular Substances , 1913 .

[51]  E. J. Jones The infrared spectrum of spruce native lignin. , 1948, Journal of the American Chemical Society.

[52]  T. Kondo,et al.  Physical gelation process for cellulose whose hydroxyl groups are regioselectively substituted by fluorescent groups , 1997 .

[53]  R. T. O’connor,et al.  Applications of Infrared Absorption Spectroscopy to Investigations of Cotton and Modified Cottons , 1958 .

[54]  R. Marchessault,et al.  Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses , 1959 .

[55]  Y. Hishikawa,et al.  Molecular orientation in the Nematic Ordered Cellulose film using polarized FTIR accompanied with a vapor-phase deuteration method , 2010 .

[56]  G. Ciardelli,et al.  Graft Polymerisation of Functional Acrylic Monomers onto Cotton Fibres Activated by Continuous Ar Plasma , 2006 .

[57]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[58]  R. Marchessault,et al.  Hydrogen bonds in native celluloses , 1959 .

[59]  J. Mann,et al.  A study by infra‐red spectroscopy of hydrogen bonding in cellulose , 2007 .

[60]  Dong Il Yoo,et al.  FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. , 2005, Carbohydrate research.

[61]  J. Bras,et al.  Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry , 2008 .

[62]  J. Sugiyama,et al.  Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall , 1991 .

[63]  M. L. Nelson,et al.  Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II , 1964 .

[64]  J. Hearle,et al.  A fringed fibril theory of structure in crystalline polymers , 1958 .

[65]  R. E. Reeves,et al.  Spectrophotometric Evidence for the Absence of Free Aldehyde Groups in Periodate-oxidized Cellulose1 , 1951 .

[66]  P. Langan,et al.  A REVISED STRUCTURE AND HYDROGEN-BONDING SYSTEM IN CELLULOSE II FROM A NEUTRON FIBER DIFFRACTION ANALYSIS , 1999 .

[67]  D. Fengel Influence of Water on the OH Valency Range in Deconvoluted FTIR Spectra of Cellulose , 1993 .

[68]  A. J. Michell Second-derivative FTIR spectra of native celluloses from Valonia and tunicin , 1993 .

[69]  J. Loike,et al.  Determination of structure , 1990 .

[70]  R. Brown,et al.  "Nematic ordered cellulose": a concept of glucan chain association. , 2001, Biomacromolecules.

[71]  P. Garriga,et al.  Structural analysis of photodegraded wood by means of FTIR spectroscopy , 2003 .

[72]  J. Ellis,et al.  The Near Infra‐Red Absorption Spectrum of Sucrose Crystals in Polarized Light , 1938 .

[73]  F. Brauns,et al.  Native Lignin. II. Native Aspen Lignin , 1949 .

[74]  T. E. Timell THE CONSTITUTION OF A HEMICELLULOSE FROM SUGAR MAPLE (ACER SACCHARUM) , 1959 .

[75]  J. Rowen,et al.  Cotton powder for infrared transmission measurements , 1950 .

[76]  M. Ansell,et al.  Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization , 2002 .

[77]  R. T. O’connor,et al.  Applications of Infrared Absorption Spectroscopy to Investigations of Cotton and Modified Cottons , 1958 .

[78]  Jasna S. Stevanic,et al.  Orientation of the wood polymers in the cell wall of spruce wood fibres , 2009 .

[79]  R. Marchessault,et al.  Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.−1 , 1959 .

[80]  Sun-Young Lee,et al.  Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites , 2010 .

[81]  R. Marchessault,et al.  Infrared spectra of crystalline polysaccharides. III. Mercerized cellulose , 1960 .

[82]  J. Blackwell,et al.  Determination of the structure of cellulose II. , 1976, Macromolecules.

[83]  J. Koenig,et al.  FTIR images : A new technique produces images worth a thousand spectra , 2001 .

[84]  V. Hristov,et al.  Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites , 2003 .

[85]  Yi Li,et al.  FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues , 2005, Wood Science and Technology.

[86]  X. Colom,et al.  Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites , 2003 .

[87]  H. Srivastava,et al.  Uronic Acid Components of Jute Fiber Hemicellulose1,2 , 1959 .

[88]  A. Duarte,et al.  Modification of cellulosic fibres with functionalised silanes: development of surface properties , 2004 .