New Materials and Advances in Electronic Skin for Interactive Robots

Flexible electronics has huge potential to bring revolution in robotics and prosthetics as well as to bring about the next big evolution in electronics industry. In robotics and related applications it is expected to revolutionize the way with which machines interact with humans, real-world objects and the environment. For example, the conformable electronic or tactile skin on robot’s body, enabled by advances in flexible electronics, will allow safe robotic interaction during physical contact of robot with various objects. Developing a conformable, bendable and stretchable electronic system requires distributing electronics over large non-planar surfaces and movable components. The current research focus in this direction is marked by the use of novel materials or by the smart engineering of the traditional materials to develop new sensors, electronics on substrates that can be wrapped around curved surfaces. Attempts are being made to achieve flexibility/ stretchability in e-skin while retaining a reliable operation. This review provides insight into various materials that has been used in the development of flexible electronics primarily for e-skin applications.

[1]  Kaspar Althoefer,et al.  A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor , 2012, 2012 IEEE International Conference on Robotics and Automation.

[2]  D. Khang,et al.  Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors , 2012 .

[3]  Chang Liu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Development of Polyimide Flexible Tactile Sensor Skin , 2022 .

[4]  Yongli Mi,et al.  Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: A new method of microfabrication by the self-assembled micropatterns of diblock copolymer micelles , 2006 .

[5]  Z. Pei,et al.  Grinding of silicon wafers: A review from historical perspectives , 2008 .

[6]  Dae-Sik Lee,et al.  Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films , 2010 .

[7]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[8]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[9]  Gordon Cheng,et al.  Humanoid Multimodal Tactile-Sensing Modules , 2011, IEEE Transactions on Robotics.

[10]  S. Bauer,et al.  Environmentally sustainable organic field effect transistors , 2010 .

[11]  C. Landesberger,et al.  New dicing and thinning concept improves mechanical reliability of ultra thin silicon , 2001, Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562).

[12]  Leandro Lorenzelli,et al.  Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review , 2015, IEEE Sensors Journal.

[13]  Zhuo Sun,et al.  Field emission properties of carbon nanotubes in a stretchable polydimethylsiloxane matrix , 2012 .

[14]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[15]  Andrea Lockerd Thomaz,et al.  Reinforcement Learning with Human Teachers: Understanding How People Want to Teach Robots , 2006, ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication.

[16]  A. Facchetti,et al.  All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. , 2010, Journal of the American Chemical Society.

[17]  Gordon Cheng,et al.  Humanoids learn touch modalities identification via multi-modal robotic skin and robust tactile descriptors , 2015, Adv. Robotics.

[18]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[19]  Maurizio Valle,et al.  Tactile Sensing Technologies , 2013 .

[20]  J. Burghartz,et al.  Ultra-thin chip fabrication for next-generation silicon processes , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[21]  Ravinder Dahiya,et al.  Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates , 2012 .

[22]  Won Ho Jo,et al.  Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. , 2010, ACS nano.

[23]  John A. Rogers,et al.  Highly Sensitive Skin‐Mountable Strain Gauges Based Entirely on Elastomers , 2012 .

[24]  George M. Whitesides,et al.  New Approaches to Nanofabrication: Molding, Printing, and Other Techniques , 2005 .

[25]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[26]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[27]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[28]  Sanjeev K. Manohar,et al.  Flexible vapour sensors using single walled carbon nanotubes , 2006 .

[29]  S. Roth,et al.  Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors , 2006 .

[30]  Jian Xiu Su,et al.  Investigation on Material Removal Rate in Rotation Grinding for Large-Scale Silicon Wafer , 2004 .

[31]  Yasumitsu Miyata,et al.  Tunable Carbon Nanotube Thin‐Film Transistors Produced Exclusively via Inkjet Printing , 2010, Advanced materials.

[32]  Norbert Fruehauf,et al.  Solution-deposited carbon nanotube layers for flexible display applications , 2007 .

[33]  Ravinder S. Dahiya,et al.  Bendable Ultra-Thin Chips on Flexible Foils , 2013, IEEE Sensors Journal.

[34]  Zhiyong Fan,et al.  Large-scale integration of semiconductor nanowires for high-performance flexible electronics. , 2012, ACS nano.

[35]  Aude Billard,et al.  A survey of Tactile Human-Robot Interactions , 2010, Robotics Auton. Syst..

[36]  R. Ruoff,et al.  All-organic vapor sensor using inkjet-printed reduced graphene oxide. , 2010, Angewandte Chemie.

[37]  Ravinder Dahiya,et al.  Flexible Pressure Sensors Based on Screen-Printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs , 2015, IEEE Transactions on Semiconductor Manufacturing.

[38]  Won Il Park,et al.  Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors , 2011 .

[39]  S. Roth,et al.  Transparent and flexible carbon nanotube/polyaniline pH sensors , 2006 .

[40]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[41]  G. Grüner,et al.  Transparent and flexible carbon nanotube transistors. , 2005, Nano letters.

[42]  Maurizio Valle,et al.  POSFET tactile sensing chips using CMOS technology , 2013, 2013 IEEE SENSORS.

[43]  Raoul Schroeder,et al.  High‐Performance Organic Transistors Using Solution‐Processed Nanoparticle‐Filled High‐k Polymer Gate Insulators , 2005 .

[44]  Kai Yan,et al.  Toward clean and crackless transfer of graphene. , 2011, ACS nano.

[45]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[46]  Ravinder Dahiya,et al.  Developing Electronic Skin with the Sense of Touch , 2015 .

[47]  Heli Jantunen,et al.  Inkjet printing of electrically conductive patterns of carbon nanotubes. , 2006, Small.

[48]  S. Ko,et al.  Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network , 2012, Advanced materials.

[49]  Yan-Bin Jia,et al.  Surface Patch Reconstruction From “One-Dimensional” Tactile Data , 2010, IEEE Transactions on Automation Science and Engineering.

[50]  Yonggang Huang,et al.  Biaxially stretchable "wavy" silicon nanomembranes. , 2007, Nano letters.

[51]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[52]  Jong-Ho Kim,et al.  A silicon-based flexible tactile sensor for ubiquitous robot companion applications , 2006 .

[53]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[54]  Zhiyong Fan,et al.  Parallel Array Inas Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency Electronics , 2022 .

[55]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[56]  Wu Wang,et al.  High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates , 2003 .

[57]  Gordon Cheng,et al.  Directions Toward Effective Utilization of Tactile Skin: A Review , 2013, IEEE Sensors Journal.

[58]  B. Shirinzadeh,et al.  A wearable and highly sensitive pressure sensor with ultrathin gold nanowires , 2014, Nature Communications.

[59]  Kaspar Althoefer,et al.  Tactile image based contact shape recognition using neural network , 2012, 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[60]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[61]  John A Rogers,et al.  Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. , 2012, Small.

[62]  R. Dekker,et al.  A 10 /spl mu/m thick RF-ID tag for chip-in-paper applications , 2005, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 2005..

[63]  T. Bryllert Vertical wrap-gated nanowire FETs , 2005 .

[64]  Jin Suk Chung,et al.  Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating , 2010 .

[65]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[66]  J. Rogers,et al.  Stretchable graphene transistors with printed dielectrics and gate electrodes. , 2011, Nano letters.

[67]  Jong-Hyun Ahn,et al.  Coplanar-gate transparent graphene transistors and inverters on plastic. , 2012, ACS nano.

[68]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[69]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[70]  Luigi Pinna,et al.  Tactile Sensing Chips With POSFET Array and Integrated Interface Electronics , 2014, IEEE Sensors Journal.

[71]  Christian Cipriani,et al.  Roughness Encoding for Discrimination of Surfaces in Artificial Active-Touch , 2011, IEEE Transactions on Robotics.

[72]  Mark Lee,et al.  Review Article Tactile sensing for mechatronics—a state of the art survey , 1999 .

[73]  Nawid Jamali,et al.  Majority Voting: Material Classification by Tactile Sensing Using Surface Texture , 2011, IEEE Transactions on Robotics.

[74]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[76]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[77]  M. Shikida,et al.  Amicromachined active tactile sensor for hardness detection , 2004 .

[78]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[79]  Paul L. McEuen,et al.  Mechanical properties of suspended graphene sheets , 2007 .

[80]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.

[81]  S. Kal,et al.  Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon , 2006, Microelectron. J..

[82]  Aiguo Song,et al.  A Novel Texture Sensor for Fabric Texture Measurement and Classification , 2014, IEEE Transactions on Instrumentation and Measurement.

[83]  Yo Kato,et al.  Fast and Accurate Tactile Sensor System for a Human-Interactive Robot , 2008 .

[84]  Zhong Lin Wang,et al.  Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging , 2013, Science.

[85]  Jong-Hyun Ahn,et al.  Graphene-based transparent strain sensor , 2013 .

[86]  P. Ajayan,et al.  CORRIGENDUM: Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection , 2013, Scientific Reports.

[87]  Coskun Kocabas,et al.  Graphene based flexible electrochromic devices , 2014, Scientific Reports.

[88]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[89]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[90]  D.D.L. Chung,et al.  Electrically conducting powder filled polyimidesiloxane , 1991 .

[91]  K. Gottschalk,et al.  Fabrication of micro pillars using multiwall carbon nanotubes/polymer nanocomposites , 2013 .

[92]  Nae-Eung Lee,et al.  Transparent and flexible organic field-effect transistor for multi-modal sensing , 2012 .

[93]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[94]  Ajit Khosla,et al.  Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer , 2009 .

[95]  M. Knite,et al.  Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials , 2004 .

[96]  Eugene M. Terentjev,et al.  Tailoring the Electrical Properties of Carbon Nanotube–Polymer Composites , 2010 .

[97]  Jiyoul Lee,et al.  Ion gel gated polymer thin-film transistors. , 2007, Journal of the American Chemical Society.

[98]  Ajit Khosla,et al.  Preparation, Micro‐Patterning and Electrical Characterization of Functionalized Carbon‐Nanotube Polydimethylsiloxane Nanocomposite Polymer , 2010 .

[99]  P. Sheng,et al.  Characterizing and Patterning of PDMS‐Based Conducting Composites , 2007 .

[100]  M. Segal Selling graphene by the ton. , 2009, Nature nanotechnology.

[101]  Junichi Tatami,et al.  Dispersion of carbon nanotubes in ethanol by a bead milling process , 2011 .

[102]  Jin-Woo Choi,et al.  Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing , 2009 .

[103]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[104]  E. O. Polat,et al.  Synthesis of graphene on ultra-smooth copper foils for large area flexible electronics , 2015, 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[105]  Jong-Hyun Ahn,et al.  High-performance flexible graphene field effect transistors with ion gel gate dielectrics. , 2010, Nano letters.

[106]  Ravinder Dahiya,et al.  PDMS residues-free micro/macrostructures on flexible substrates , 2015 .

[107]  Stéphanie P. Lacour,et al.  Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates , 2009 .

[108]  Hadi Heidari,et al.  Towards bendable CMOS magnetic sensors , 2015, 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[109]  조길원,et al.  Transparent, Low-power Pressure Sensor Matrix based on Coplanar-gate Graphene Transistors , 2014 .