Mid-infrared coronary laser angioplasty with multifiber catheters
暂无分享,去创建一个
Mid-infrared laser wavelengths offer advantages as a source for coronary angioplasty based upon the excellent fiberoptic transmission and the enhanced tissue absorption of these photons. We report the results of a pilot clinical trial of a Holmium:YAG (2.1 micrometers ) coronary laser angioplasty using a prototype (1.6 mm and 2.0 mm) multifiber catheters. Coronary laser angioplasty with or without adjunctive balloon angioplasty or directional atherectomy was performed in 14 patients with 17 coronary stenoses. Laser success was obtained in 13/14 (93%) patients and 16/17 (94%) lesions. Uncomplicated procedural success was achieved in 9/14 (64%) patients and 12/17 (71%) lesions. Our initial laser success rate was very encouraging using this prototype multifiber catheter with a holmium:YAG laser. However, our overall procedural success rate was disappointing, and not superior to that expected with conventional angioplasty alone. The holmium laser remains an attractive energy source for laser angioplasty, but its utility is limited by catheters which create inadequate channels for stand-alone laser angioplasty.
[1] R. F. Donaldson,et al. Reduction of laser-induced pathologic tissue injury using pulsed energy delivery. , 1985, The American journal of cardiology.
[2] B Paul,et al. Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. , 1983, The Journal of investigative dermatology.