Lie point symmetries and conservation laws for a class of BBM-KdV systems

Abstract We determine the Lie point symmetries of a class of BBM-KdV systems and establish its nonlinear self-adjointness. We then construct conservation laws via Ibragimov’s Theorem.

[1]  N. Ibragimov A new conservation theorem , 2007 .

[2]  Nail H. Ibragimov,et al.  Integrating factors, adjoint equations and Lagrangians , 2006 .

[3]  Min Chen,et al.  Exact solutions of various Boussinesq systems , 1998 .

[4]  Nail H. Ibragimov,et al.  Nonlinear self-adjointness and conservation laws , 2011, 1107.4877.

[5]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[6]  Maria Luz Gandarias,et al.  Weak self-adjoint differential equations , 2011 .

[7]  A. Durán,et al.  A Numerical Study of the Stability of Solitary Waves of the Bona–Smith Family of Boussinesq Systems , 2007, J. Nonlinear Sci..

[8]  J. Bona,et al.  Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory , 2004 .

[9]  Min Chen,et al.  Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory , 2002, J. Nonlinear Sci..

[10]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[11]  Nail H. Ibragimov,et al.  Nonlinear self-adjointness in constructing conservation laws , 2011, 1109.1728.

[12]  Nail H. Ibragimov,et al.  Quasi-self-adjoint differential equations , 2007 .

[13]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[14]  D. C. Antonopoulos,et al.  Numerical solution of Boussinesq systems of the Bona--Smith family , 2010 .