Adaptive meshing schemes for simulating dopant diffusion
暂无分享,去创建一个
[1] H. H. Hansen,et al. FEDSS—Finite-element diffusion-simulation system , 1983, IEEE Transactions on Electron Devices.
[2] J. Penman,et al. Self-adaptive mesh generation technique for the finite-element method , 1987 .
[3] Alan Weiser,et al. Local-mesh, local-order, adaptive finite element methods with a-posteriori error estimators for elliptic partial differential equations , 1981 .
[4] Robert W. Dutton,et al. The efficient simulation of coupled point defect and impurity diffusion , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[5] J. Z. Zhu,et al. The finite element method , 1977 .
[6] R. Tielert. Two-dimensional numerical simulation of impurity redistribution in VLSI processes , 1980 .
[7] Gehan A. J. Amaratunga,et al. SIMPLE REMESHING SCHEME FOR THE FINITE ELEMENT BASED SIMULATION OF DOPANT DIFFUSION IN SILICON. , 1985 .
[8] K. Haberger,et al. Simulation of doping processes , 1980 .
[9] Robert W. Dutton,et al. Verification of analytic point defect models using SUPREM-IV [dopant diffusion] , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[10] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[11] Z. J. Cendes,et al. Adaptive mesh refinement in the finite element computation of magnetic fields , 1985 .
[12] J E Flaherty,et al. Adaptive Refinement Methods for Nonlinear Parabolic Partial Differential Equations. , 1984 .
[13] I. Babuška,et al. The finite element method for parabolic equations , 1982 .
[14] H. Iwai,et al. Two-dimensional computer simulation models for MOSLSI fabrication processes , 1981, IEEE Transactions on Electron Devices.
[15] Isaac Fried,et al. Finite element mass matrix lumping by numerical integration with no convergence rate loss , 1975 .
[16] Ivo Babuška,et al. The finite element method for parabolic equations , 1982 .
[17] Scott W. Sloan,et al. An implementation of Watson's algorithm for computing 2-dimensional delaunay triangulations , 1984 .