Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions

[1]  Jiming Ma,et al.  Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures , 2004 .

[2]  M. Terrones,et al.  Microscopy Study of the Growth Process and Structural Features of Silicon Oxide Nanoflowers , 1999 .

[3]  Shuji Okada,et al.  Size-Dependent Colors and Luminescences of Organic Microcrystals , 1996 .

[4]  D. Magde,et al.  Luminescent silole nanoparticles as chemoselective sensors for Cr(VI). , 2005, Journal of the American Chemical Society.

[5]  Liming He,et al.  Enhanced Fluorescent Emission of Organic Nanoparticles of an Intramolecular Proton Transfer Compound and Spontaneous Formation of One-Dimensional Nanostructures , 2004 .

[6]  Yongqiang Dong,et al.  Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates. , 2005, The journal of physical chemistry. B.

[7]  H. Masuhara,et al.  Near-field fluorescence spectroscopy and photochemistry of organic mesoscopic materials , 2000 .

[8]  Kam Sing Wong,et al.  Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique , 2005 .

[9]  Ben Zhong Tang,et al.  Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles , 2003 .

[10]  S. Okada,et al.  Single-crystal-to-single-crystal transformation of diolefin derivatives in nanocrystals. , 2002, Journal of the American Chemical Society.

[11]  S. Jenekhe,et al.  Excimers and Exciplexes of Conjugated Polymers , 1994, Science.

[12]  T. Swager,et al.  A Poly(p-phenyleneethynylene) with a Highly Emissive Aggregated Phase , 2000 .

[13]  B. Tang,et al.  Silole-containing polyacetylenes. Synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation , 2003 .

[14]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[15]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[16]  Chih-Wei Chang,et al.  Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. , 2005, The journal of physical chemistry. B.

[17]  B. Tang,et al.  Highly efficient organic light-emitting diodes with a silole-based compound , 2002 .

[18]  Y. Bando,et al.  MoS2 nanoflowers and their field-emission properties , 2003 .

[19]  Daoben Zhu,et al.  Efficient blue emission from siloles , 2001 .

[20]  Ian D. Williams,et al.  Hyperbranched Poly(phenylenesilolene)s:  Synthesis, Thermal Stability, Electronic Conjugation, Optical Power Limiting, and Cooling-Enhanced Light Emission , 2003 .

[21]  T. Sham,et al.  Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: nanowires, nanoneedles, nanoflowers, and tubular whiskers. , 2005, The journal of physical chemistry. B.

[22]  Akira Watanabe,et al.  Crystal Size Dependence of Emission from Perylene Microcrystals , 1997 .

[23]  Robert W. Boyd,et al.  Optical Properties of Nanostructured Optical Materials , 1996 .

[24]  B. Tang,et al.  Highly efficient electroluminescence devices based on conjugated polymers blended with siloles (MPPS) , 2003 .

[25]  Andrew G. Glen,et al.  APPL , 2001 .

[26]  Sang-Don Jung,et al.  Enhanced emission and its switching in fluorescent organic nanoparticles. , 2002, Journal of the American Chemical Society.

[27]  Nobutsugu Minami,et al.  A Novel Preparation Method of Organic Microcrystals , 1992 .

[28]  J. Yao,et al.  Size Effects on the Optical Properties of Organic Nanoparticles , 2001 .

[29]  J. Rieger,et al.  Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.

[30]  H S Kwok,et al.  Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. , 2001, Chemical communications.