Baseline model of a centralized pv electrolytic hydrogen system

Abstract This study performs an economic and environmental analysis of a centralized pv electrolytic hydrogen system scaled to supply H 2 to one million light duty vehicles and light commercial trucks. Annual H 2 production is 217-million kg. The size of the pv electrolysis plant to produce this quantity of H 2 is a 5.12-GW dc-in electrolysis plant and a 6.0-GW p pv power plant. The land area of the pv electrolysis plant is 260 km 2 . The total capital costs of the pv electrolysis H 2 system is $12.4 billion. The levelized H 2 pump price estimate is $6.48/kg. The life cycle primary energy use is 36 MJ/kg of H 2 consumption, and life cycle CO 2 equivalent emissions are 2.6 kg/kg of H 2 consumption. The replacement of conventional gasoline powered vehicles with H 2 powered vehicles reduces primary energy use and CO 2 emissions by 90%.

[1]  Theresa M. Shires,et al.  Methane Emissions from the Natural Gas Industry Project Summary , 1997 .

[2]  Vasilis Fthenakis,et al.  Life cycle impact analysis of cadmium in CdTe PV production , 2004 .

[3]  W. Marion,et al.  A new solar radiation data manual for flat‐plate and concentrating collectors , 1994 .

[4]  Christopher Yang,et al.  Determining the lowest-cost hydrogen delivery mode , 2007 .

[5]  L. Gaines,et al.  Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report , 1998 .

[6]  E. Alsema,et al.  Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004–early 2005 status , 2006 .

[7]  Katherine E. Seiferlein Annual Energy Review 2005 , 2006 .

[8]  W. Amos Costs of Storing and Transporting Hydrogen , 1999 .

[9]  Shangzhao Shi,et al.  Research frontier on new materials and concepts for hydrogen storage , 2007 .

[10]  K. Zweibel,et al.  Issues in thin film PV manufacturing cost reduction , 1999 .

[11]  Vasilis Fthenakis,et al.  Emissions and encapsulation of cadmium in CdTe PV modules during fires , 2005 .

[12]  T. Copeland,et al.  Financial Theory and Corporate Policy. , 1980 .

[13]  T. Dietsch Photovoltaics of the Neunburg vorm Wald solar hydrogen project , 1996 .

[14]  K. Zweibel,et al.  Terawatt Challenge for Thin-Film PV , 2005 .

[15]  A. Koschinsky,et al.  Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium , 2003 .

[16]  Stanford R. Ovshinsky,et al.  Recent Advances in Solid Hydrogen Storage Systems , 2003 .

[17]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[18]  Vinod K. Natarajan,et al.  Comparative Assessment of Fuel Cell Cars , 2003 .

[19]  V. Bondarenko,et al.  The effect of temperature and holding time on the degree of regeneration of T5K10 alloy waste in hydrogen containing equilibrium amounts of methane , 1999 .

[20]  M. S. Keshner,et al.  Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004 , 2004 .

[21]  Hui‐Ming Cheng,et al.  Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture , 2006 .

[22]  A Szyszka,et al.  Ten years of solar hydrogen demonstration project at Neunburg vorm Wald, Germany , 1998 .

[23]  Jimmy Peress,et al.  Working with non-ideal gases , 2003 .

[24]  John B. Heywood,et al.  ON THE ROAD IN 2020 - A LIFE-CYCLE ANALYSIS OF NEW AUTOMOBILE TECHNOLOGIES , 2000 .

[25]  Reuel Shinnar,et al.  Solar thermal energy: The forgotten energy source , 2007 .