Brain circuits underlying visual stability across eye movements—converging evidence for a neuro-computational model of area LIP

The understanding of the subjective experience of a visually stable world despite the occurrence of an observer's eye movements has been the focus of extensive research for over 20 years. These studies have revealed fundamental mechanisms such as anticipatory receptive field (RF) shifts and the saccadic suppression of stimulus displacements, yet there currently exists no single explanatory framework for these observations. We show that a previously presented neuro-computational model of peri-saccadic mislocalization accounts for the phenomenon of predictive remapping and for the observation of saccadic suppression of displacement (SSD). This converging evidence allows us to identify the potential ingredients of perceptual stability that generalize beyond different data sets in a formal physiology-based model. In particular we propose that predictive remapping stabilizes the visual world across saccades by introducing a feedback loop and, as an emergent result, small displacements of stimuli are not noticed by the visual system. The model provides a link from neural dynamics, to neural mechanism and finally to behavior, and thus offers a testable comprehensive framework of visual stability.

[1]  A. J. van Opstal,et al.  Experimental test of visuomotor updating models that explain perisaccadic mislocalization. , 2008 .

[2]  Michael E. Goldberg,et al.  The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space , 2012, Neuron.

[3]  F. Hamker,et al.  A Computational Model for the Influence of Corollary Discharge and Proprioception on the Perisaccadic Mislocalization of Briefly Presented Stimuli in Complete Darkness , 2011, The Journal of Neuroscience.

[4]  Florian Ostendorf,et al.  A role of the human thalamus in predicting the perceptual consequences of eye movements , 2013, Front. Syst. Neurosci..

[5]  Marc A Sommer,et al.  Division of labor in frontal eye field neurons during presaccadic remapping of visual receptive fields. , 2012, Journal of neurophysiology.

[6]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[7]  Bruce Bridgeman,et al.  Efference copy and its limitations , 2007, Comput. Biol. Medicine.

[8]  Y. Cohen,et al.  Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. , 2005, Journal of neurophysiology.

[9]  Christopher J. Peck,et al.  The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex. , 2011, Journal of neurophysiology.

[10]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[11]  E. M. Klier,et al.  Spatial updating and the maintenance of visual constancy , 2008, Neuroscience.

[12]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[13]  Marc A. Sommer,et al.  Division of Labor in Frontal Eye Field Neurons during Presaccadic Remapping of 1 Visual Receptive Fields 2 3 Sooyoon Shin , 2012 .

[14]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[15]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[16]  M. Schlag-Rey,et al.  Through the eye, slowly; Delays and localization errors in the visual system , 2002, Nature Reviews Neuroscience.

[17]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  P Dassonville,et al.  Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates , 1992, Visual Neuroscience.

[19]  Gregor Schöner,et al.  A neural mechanism for coordinate transformation predicts pre-saccadic remapping , 2012, Biological Cybernetics.

[20]  K. Hoffmann,et al.  Neural Dynamics of Saccadic Suppression , 2009, Journal of Neuroscience.

[21]  Timothy D. Hanks,et al.  Bounded Integration in Parietal Cortex Underlies Decisions Even When Viewing Duration Is Dictated by the Environment , 2008, The Journal of Neuroscience.

[22]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[23]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[24]  Heiner Deubel,et al.  Post-saccadic location judgments reveal remapping of saccade targets to non-foveal locations. , 2009, Journal of vision.

[25]  T. Sejnowski,et al.  Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[26]  W Pieter Medendorp,et al.  Spatial constancy mechanisms in motor control , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  E. Salinas,et al.  Perceptual decision making in less than 30 milliseconds , 2010, Nature Neuroscience.

[28]  Paul M Bays,et al.  Spatial remapping of the visual world across saccades , 2007, Neuroreport.

[29]  A. John Van Opstal,et al.  Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts , 2012 .

[30]  J. Douglas Crawford,et al.  Optimal transsaccadic integration explains distorted spatial perception , 2003, Nature.

[31]  Julie D. Golomb,et al.  Attentional Facilitation throughout Human Visual Cortex Lingers in Retinotopic Coordinates after Eye Movements , 2010, The Journal of Neuroscience.

[32]  Keith D. White,et al.  Contrast sensitivity during saccadic eye movements , 1978, Vision Research.

[33]  D. Boussaoud,et al.  Gaze effects in the cerebral cortex: reference frames for space coding and action , 1999, Experimental Brain Research.

[34]  A. John Van Opstal,et al.  Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts , 2012, PloS one.

[35]  Fred H. Hamker,et al.  The spatial distribution of receptive field changes in a model of peri-saccadic perception: Predictive remapping and shifts towards the saccade target , 2010, Vision Research.

[36]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[37]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[38]  Christian Quaia,et al.  The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields , 1998, Neural Networks.

[39]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[40]  Markus Lappe,et al.  Anticipatory Saccade Target Processing and the Presaccadic Transfer of Visual Features , 2011, The Journal of Neuroscience.

[41]  Gerald P. Keith,et al.  Saccade-related remapping of target representations between topographic maps: a neural network study , 2008, Journal of Computational Neuroscience.

[42]  Arnold Ziesche,et al.  Computational models of spatial updating in peri-saccadic perception , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  D. Robinson,et al.  Saccadic undershoot is not inevitable: Saccades can be accurate , 1986, Vision Research.

[44]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[45]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[46]  Fred H Hamker,et al.  Split of spatial attention as predicted by a systems‐level model of visual attention , 2011, The European journal of neuroscience.

[47]  John Philip Patten,et al.  The Brain Stem , 1996 .

[48]  T. R. Kumar The spatial distribution , 2000 .

[49]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[50]  P. Cavanagh,et al.  Predictive remapping of attention across eye movements , 2011, Nature Neuroscience.

[51]  K. Hoffmann,et al.  Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. , 1997, Journal of neurophysiology.

[52]  B. Bridgeman,et al.  Postsaccadic target blanking prevents saccadic suppression of image displacement , 1996, Vision Research.

[53]  Michael W. Spratling,et al.  Multiplicative Gain Modulation Arises Through Unsupervised Learning in a Predictive Coding Model of Cortical Function , 2011, Neural Computation.

[54]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. , 2004, Journal of neurophysiology.

[55]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[56]  Gunnar Blohm,et al.  Influence of saccade efference copy on the spatiotemporal properties of remapping: a neural network study. , 2010, Journal of neurophysiology.

[57]  T. J. Sejnowskiz Lesion in a Basis Function Model of Parietal Cortex: Comparison with Hemineglect , 1996 .

[58]  Vincent P Ferrera,et al.  Computing vector differences using a gain field‐like mechanism in monkey frontal eye field , 2007, The Journal of physiology.

[59]  A John Van Opstal,et al.  Experimental test of visuomotor updating models that explain perisaccadic mislocalization. , 2008, Journal of vision.

[60]  R A Andersen,et al.  Memory activity of LIP neurons for sequential eye movements simulated with neural networks. , 2000, Journal of neurophysiology.

[61]  Fred H. Hamker,et al.  The mechanisms of feature inheritance as predicted by a systems-level model of visual attention and decision making , 2008, Advances in cognitive psychology.

[62]  Markus Lappe,et al.  The Peri-Saccadic Perception of Objects and Space , 2008, PLoS Comput. Biol..

[63]  Tobias Teichert,et al.  Perisaccadic mislocalization as optimal percept. , 2010, Journal of vision.