Chaotic synchronization between linearly coupled discrete fractional Hénon maps

Chaotic synchronization between linearly coupled discrete fractional Hénon maps is investigated in this paper. We obtain the numerical formula of discrete fractional Hénon map by utilizing the discrete fractional calculus. We tune the linear coupling parameter and the order parameter of discrete fractional Hénon map to obtain the two discrete fractional Hénon maps in a synchronized regime and analyze the effect of linear coupling on synchronized degree. It demonstrates that the order parameter of discrete fractional Hénon map affects synchronization dynamics and with the increase of linear coupling strength, the effect of synchronization between discrete fractional Hénon maps is enhanced. Further investigation reveals that the transition of synchronization between discrete fractional Hénon maps are related to the critical changes in linearly coupled strength.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Yong Zhou,et al.  Existence Results for Nonlinear Fractional Difference Equation , 2011 .

[3]  Gaurav Bhatnagar,et al.  Discrete fractional wavelet transform and its application to multiple encryption , 2013, Inf. Sci..

[4]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[5]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[6]  Lu Qi-Shao,et al.  Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons , 2005 .

[7]  S. E. Khaikin,et al.  Theory of Oscillations , 2015 .

[8]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[9]  Ioannis M. Kyprianidis,et al.  Chaotic synchronization of three coupled oscillators with ring connection , 2003 .

[10]  Alexey A. Koronovskii,et al.  Chaotic synchronization in coupled spatially extended beam-plasma systems , 2006 .

[11]  Zhen-Lai Han,et al.  The existence and nonexistence of positive solutions to a discrete fractional boundary value problem with a parameter , 2014, Appl. Math. Lett..

[12]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[13]  S. Bowong Stability analysis for the synchronization of chaotic systems with different order: application to secure communications , 2004 .

[14]  Jürgen Kurths,et al.  Phase Synchronization in Regular and Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[15]  P. Eloe,et al.  Initial value problems in discrete fractional calculus , 2008 .

[16]  Olga I. Moskalenko,et al.  On the use of chaotic synchronization for secure communication , 2009 .

[17]  J. Kurths,et al.  Sensitivity and specificity of coherence and phase synchronization analysis , 2006 .

[18]  Michael T. Holm,et al.  The Laplace transform in discrete fractional calculus , 2011, Comput. Math. Appl..

[19]  J Kurths,et al.  Phase synchronization in the forced Lorenz system. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[21]  Dumitru Baleanu,et al.  Discrete chaos in fractional sine and standard maps , 2014 .

[22]  George A. Anastassiou About Discrete Fractional Calculus with Inequalities , 2011 .

[23]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[24]  Phase synchronization in tilted deterministic ratchets , 2006, cond-mat/0609004.

[25]  PHASE SYNCHRONIZATION OF RÖSSLER OSCILLATORS WITH PARAMETRIC EXCITATION , 2010 .