Protein-Protein Docking Using Three-Dimensional Reduced Representations and Based on a Genetic Algorithm

An original scoring function dedicated to the docking of biological macromolecules is implemented in complementarity research within an automated algorithm. As these systems involve complicated atomic structures, we use for each partner reduced representations obtained by topological analysis of electron density maps at medium resolution, and develop specific terms for the characterization of the intermolecular interactions including a geometric fit based on the knowledge in a statistical survey, an electronic interaction potential using an expression of modified Coulomb type, and a penalty score based on detection of steric clashes. To validate the strategy, we performed automated docking runs, based on genetic algorithms (GA) for various protein-protein complexes including enzyme-inhibitor and antibody-antigen. For most complexes, the GA-proposed fit solutions have rmsd values below 3 A relative to the native structures

[1]  Harold A. Scheraga,et al.  Prodock: Software package for protein modeling and docking , 1999 .

[2]  J. Janin,et al.  Protein‐protein recognition analyzed by docking simulation , 1991, Proteins.

[3]  Miriam Eisenstein,et al.  Weighted geometric docking: Incorporating external information in the rotation‐translation scan , 2003, Proteins.

[4]  Helge Weissig,et al.  Protein structure resources. , 2002, Acta crystallographica. Section D, Biological crystallography.

[5]  L. Krippahl,et al.  BiGGER: A new (soft) docking algorithm for predicting protein interactions , 2000, Proteins.

[6]  Nathalie Meurice,et al.  Evaluation of the protein solvent‐accessible surface using reduced representations in terms of critical points of the electron density , 2004, J. Comput. Chem..

[7]  Xueguang Shao,et al.  Protein-ligand recognition using spherical harmonic molecular surfaces: towards a fast and efficient filter for large virtual throughput screening. , 2002, Journal of molecular graphics & modelling.

[8]  Donald F. Weaver,et al.  Three variations of genetic algorithm for searching biomolecular conformation space: Comparison of GAP 1.0, 2.0, and 3.0 , 1999 .

[9]  Eleanor J. Gardiner,et al.  Protein docking using a genetic algorithm , 2001, Proteins.

[10]  David T. Jones,et al.  De novo protein design using pairwise potentials and a genetic algorithm , 1994, Protein science : a publication of the Protein Society.

[11]  I. Vakser,et al.  A systematic study of low-resolution recognition in protein--protein complexes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Frank H. Allen,et al.  Shape information from a critical point analysis of calculated electron density maps: Application to DNA-drug systems , 1994, J. Comput. Aided Mol. Des..

[13]  Wei Zu Chen,et al.  A soft docking algorithm for predicting the structure of antibody‐antigen complexes , 2003, Proteins: Structure, Function, and Bioinformatics.

[14]  J M Thornton,et al.  Protein-protein interactions: a review of protein dimer structures. , 1995, Progress in biophysics and molecular biology.

[15]  Jonathan W. Essex,et al.  A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..

[16]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[17]  Bruno Contreras-Moreira,et al.  Novel use of a genetic algorithm for protein structure prediction: Searching template and sequence alignment space , 2003, Proteins.

[18]  N Meurice,et al.  Comparison of benzodiazepine-like compounds using topological analysis and genetic algorithms. , 1998, SAR and QSAR in environmental research.

[19]  Lirong Chen,et al.  Automated docking of peptides and proteins by genetic algorithm , 1999 .

[20]  R. Abagyan,et al.  ICM‐DISCO docking by global energy optimization with fully flexible side‐chains , 2003, Proteins.

[21]  J. Skolnick,et al.  Assembly of protein structure from sparse experimental data: An efficient Monte Carlo model , 1998, Proteins.

[22]  C. Pabo,et al.  Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? , 2000, Journal of molecular biology.

[23]  L. Leherte Application of multiresolution analyses to electron density maps of small molecules: Critical point representations for molecular superposition , 2001 .

[24]  Graham J. L. Kemp,et al.  Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces , 1999, J. Comput. Chem..

[25]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[26]  B. Shoichet,et al.  Flexible ligand docking using conformational ensembles , 1998, Protein science : a publication of the Protein Society.

[27]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[28]  Jinn-Moon Yang,et al.  Flexible ligand docking using a robust evolutionary algorithm , 2000 .

[29]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[30]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[31]  W. Stites,et al.  Protein−Protein Interactions: Interface Structure, Binding Thermodynamics, and Mutational Analysis , 1997 .

[32]  Mikael Peräkylä,et al.  New energy terms for reduced protein models implemented in an off‐lattice force field , 2001, J. Comput. Chem..

[33]  Rafael Najmanovich,et al.  Side‐chain flexibility in proteins upon ligand binding , 2000, Proteins.

[34]  H A Scheraga,et al.  Reaching the global minimum in docking simulations: a Monte Carlo energy minimization approach using Bezier splines. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Paul W. Fitzjohn,et al.  Guided docking: First step to locate potential binding sites , 2003, Proteins.

[36]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[37]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[38]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[39]  Y. Cui,et al.  Protein folding simulation with genetic algorithm and supersecondary structure constraints , 1998, Proteins.

[40]  D. P. Vercauteren,et al.  Description of protein-DNA complexes in terms of electron-density topological features. , 2003, Acta crystallographica. Section D, Biological crystallography.

[41]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[42]  Dimitar Dimitrov,et al.  Conformational Coverage by a Genetic Algorithm , 1999, J. Chem. Inf. Comput. Sci..

[43]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[44]  Graeme Puxty,et al.  Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms , 2004 .

[45]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[46]  Ilya A Vakser,et al.  Docking of protein models , 2002, Protein science : a publication of the Protein Society.

[47]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[48]  Daniel P. Vercauteren,et al.  Topological analysis of electron density maps of chiral cyclodextrin-guest complexes: a steric interaction evaluation , 1995 .

[49]  M. Levitt,et al.  Computer simulation of protein folding , 1975, Nature.

[50]  C. B. Lucasius,et al.  Understanding and using genetic algorithms Part 1. Concepts, properties and context , 1993 .

[51]  J. Skolnick,et al.  Reduced models of proteins and their applications , 2004 .

[52]  G Cesareni,et al.  Escher: A new docking procedure applied to the reconstruction of protein tertiary structure , 1997, Proteins.

[53]  Martin J. Field,et al.  A Practical Introduction to the Simulation of Molecular Systems: Subject index , 2007 .

[54]  Tingjun Hou,et al.  Applications of Genetic Algorithms on the Structure-Activity Relationship Analysis of Some Cinnamamides , 1999, J. Chem. Inf. Comput. Sci..

[55]  Hugh M. Cartwright,et al.  Applications of artificial intelligence in chemistry , 1993 .

[56]  P E Bourne,et al.  The Protein Data Bank. , 2002, Nucleic acids research.

[57]  Thibaud Latour,et al.  Similarity and complementarity of molecular shapes: Applicability of a topological analysis approach , 1996, J. Comput. Aided Mol. Des..

[58]  E. Katchalski‐Katzir,et al.  Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Daniel P. Vercauteren,et al.  Development of a Genetic Algorithm Method Especially Designed for the Comparison of Molecular Models: Application to the Elucidation of the Benzodiazepine Receptor Pharmacophore , 2007 .

[60]  Peter Willett,et al.  GAPDOCK: A genetic algorithm approach to protein docking in CAPRI round 1 , 2003, Proteins.

[61]  Charles L. Brooks,et al.  Assessing energy functions for flexible docking , 1998 .

[62]  Frits Daeyaert,et al.  A pharmacophore docking algorithm and its application to the cross‐docking of 18 HIV‐NNRTI's in their binding pockets , 2004, Proteins.

[63]  C. Venkatachalam,et al.  LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. , 2003, Journal of molecular graphics & modelling.

[64]  H. Wolfson,et al.  Examination of shape complementarity in docking of Unbound proteins , 1999, Proteins.

[65]  M. Levitt A simplified representation of protein conformations for rapid simulation of protein folding. , 1976, Journal of molecular biology.

[66]  S. Vajda,et al.  Scoring docked conformations generated by rigid‐body protein‐protein docking , 2000, Proteins.

[67]  Marcos R Betancourt A reduced protein model with accurate native‐structure identification ability , 2003, Proteins.

[68]  R Abagyan,et al.  Flexible protein–ligand docking by global energy optimization in internal coordinates , 1997, Proteins.

[69]  A. di Nola,et al.  Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation , 1999, Proteins.

[70]  Daniel P. Vercauteren,et al.  Critical Point Representations of Electron Density Maps for the Comparison of Benzodiazepine-Type Ligands , 2000, J. Chem. Inf. Comput. Sci..

[71]  Ruben Abagyan,et al.  Comparative study of several algorithms for flexible ligand docking , 2003, J. Comput. Aided Mol. Des..

[72]  N. Ben-Tal,et al.  Residue frequencies and pairing preferences at protein–protein interfaces , 2001, Proteins.

[73]  M J Sternberg,et al.  Use of pair potentials across protein interfaces in screening predicted docked complexes , 1999, Proteins.

[74]  K Nadassy,et al.  Structural features of protein-nucleic acid recognition sites. , 1999, Biochemistry.

[75]  Sandor Vajda,et al.  ClusPro: an automated docking and discrimination method for the prediction of protein complexes , 2004, Bioinform..

[76]  A. Wallqvist,et al.  A simplified amino acid potential for use in structure predictions of proteins , 1994, Proteins.

[77]  Todd J. A. Ewing,et al.  Critical evaluation of search algorithms for automated molecular docking and database screening , 1997 .

[78]  J. K. Zimmerman Proteinâligand interactions: structure and spectroscopy Stephen E. Harding and Babur Z. Chowdhry (Eds.), Oxford University Press Oxford, 2001, 462 pp., ISBN 0 19 963749 0 (hardback) US$115.00, ISBN 0 19 963747 4 (paperback) US$60.00 , 2001 .