SBA-15 templating synthesis of mesoporous bismuth oxide for selective removal of iodide.

[1]  Wei Liu,et al.  Selective capture of iodide from solutions by microrosette-like δ-Bi₂O₃. , 2014, ACS applied materials & interfaces.

[2]  Yanhui Zhang,et al.  Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst , 2014 .

[3]  Jie Xu,et al.  Aerobic oxidation of primary aliphatic alcohols over bismuth oxide supported platinum catalysts in water , 2013 .

[4]  Xinxin Zhang,et al.  Highly ordered mesoporous BiVO4: Controllable ordering degree and super photocatalytic ability under visible light , 2013 .

[5]  Sivakumar R. Challa,et al.  Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? , 2013, Accounts of chemical research.

[6]  Eric D. Wachsman,et al.  Highly functional nano-scale stabilized bismuth oxides via reverse strike co-precipitation for solid oxide fuel cells , 2013 .

[7]  Ahmad Monshi,et al.  Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD , 2012 .

[8]  Yuhua Shen,et al.  Facile solvothermal synthesis of porous Bi2O 3 microsphere and their photocatalytic performance under visible light , 2012 .

[9]  M. Tiemann,et al.  Mesoporous Al2O3 by Nanocasting: Relationship between Crystallinity and Mesoscopic Order , 2012 .

[10]  Guoxiu Wang,et al.  Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. , 2012, Chemical communications.

[11]  N. Gibson,et al.  The Scherrer equation versus the 'Debye-Scherrer equation'. , 2011, Nature nanotechnology.

[12]  X. Xing,et al.  Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light. , 2011, Chemistry.

[13]  Ying Dai,et al.  Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi(2)O(3) polymorphs. , 2010, Physical chemistry chemical physics : PCCP.

[14]  D. Chakraborty,et al.  Bi2O3‐Catalyzed Oxidation of Aldehydes with t‐BuOOH. , 2010 .

[15]  Pascal Hartmann,et al.  Exceptional Photocatalytic Activity of Ordered Mesoporous β-Bi2O3 Thin Films and Electrospun Nanofiber Mats , 2010 .

[16]  D. Zhao,et al.  Ordered Mesoporous Materials , 2009 .

[17]  Yichun Liu,et al.  Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. , 2009, Journal of colloid and interface science.

[18]  Haolan Xu,et al.  Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. , 2009, Chemistry.

[19]  Jimmy C. Yu,et al.  Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst , 2008 .

[20]  F. Kleitz,et al.  Hard templating pathways for the synthesis of nanostructured porous Co₃O₄ , 2007 .

[21]  P. Roussel,et al.  Structures and oxide mobility in Bi-Ln-O materials: heritage of Bi2O3. , 2007, Chemical reviews.

[22]  R. Perzynski,et al.  "Nanocasting": using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed gamma-Fe2O3 nanoparticles. , 2006, The journal of physical chemistry. B.

[23]  O. Mentré,et al.  New ε‐Bi2O3 Metastable Polymorph. , 2006 .

[24]  Shengwei Liu,et al.  Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst , 2006 .

[25]  O. Mentré,et al.  New epsilon-Bi2O3 metastable polymorph. , 2006, Inorganic chemistry.

[26]  E. Wachsman,et al.  Stable and high conductivity ceria/bismuth oxide bilayer electrolytes for lower temperature solid oxide fuel cells , 2006 .

[27]  M. Jaroniec,et al.  Short-time synthesis of SBA-15 using various silica sources. , 2005, Journal of colloid and interface science.

[28]  A. Datye,et al.  The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica. , 2005, The journal of physical chemistry. B.

[29]  M. Jaroniec,et al.  Synthesis and Characterization of Polymer-Templated Mesoporous Silicas Containing Niobium , 2004 .

[30]  B. Tu,et al.  General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave‐Digested Mesoporous Silica , 2003 .

[31]  R. Ryoo,et al.  Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. , 2003, Chemical communications.

[32]  F. Renzo,et al.  Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis , 2003 .

[33]  S. Komarneni,et al.  Simplified synthesis of micropore-free mesoporous silica, SBA-15, under microwave-hydrothermal conditions. , 2002, Chemical communications.

[34]  S. Komarneni,et al.  Control over Microporosity of Ordered Microporous−Mesoporous Silica SBA-15 Framework under Microwave-Hydrothermal Conditions: Effect of Salt Addition , 2001 .

[35]  Mietek Jaroniec,et al.  Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore−Micropore Network? , 2000 .

[36]  M. Jaroniec,et al.  Characterization of the Porous Structure of SBA-15 , 2000 .

[37]  Gordon McKay,et al.  SORPTION OF DYE FROM AQUEOUS SOLUTION BY PEAT , 1998 .

[38]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[39]  M. Jaroniec,et al.  Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements , 1997 .

[40]  W. Göpel,et al.  Oxide ion conducting solid electrolytes based on Bi2O3 , 1996 .

[41]  Q. Huo,et al.  Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials , 1996 .

[42]  J. B. Higgins,et al.  Model Structures for MCM-41 Materials: A Molecular Dynamics Simulation , 1994 .

[43]  Hiroshi Kodama,et al.  Solidification of Iodide Ion by Reaction with Bi2O3. , 1992 .

[44]  V. Lopata,et al.  Equilibria between Bi2O3 and Bi5O7I in aqueous solutions at 10–60 °C, and in oxygen atmospheres at 550–800 °C , 1988 .

[45]  Q. Zhen,et al.  Microwave Plasma Sintered Nanocrystalline Bi2O3−HfO2−Y2O3 Composite Solid Electrolyte , 2007 .