Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi
暂无分享,去创建一个
D. Aanensen | J. Höglund | S. O'Hanlon | M. Fisher | D. Schmeller | L. F. Toledo | F. Pasmans | C. Miaud | T. James | Jennifer M. G. Shelton | D. Gower | A. Crottini | G. M. Rosa | T. Garner | A. Martel | R. Farrer | A. Laurila | A. Cunningham | J. Bosch | R. Webb | L. Skerratt | Bruce Waldman | P. Ghosh | Lola M Brookes | J. Vörös | Frances Clare | A. Loyau | A. Bataille | T. Kosch | M. Alvarado‐Rybak | K. Bates | L. Berger | S. Böll | T. Doherty-Bone | T. Jenkinson | Chun-Fu Lin | Sara Meurling | P. Minting | Freya A P Smith | C. Soto-Azat | G. Tessa | A. Valenzuela‐Sánchez | R. Verster | C. Wierzbicki | E. Wombwell | K. Zamudio | C. Weldon | Fikirte Gebresenbet | J. Longcore | B. R. Schmidt | C. Lambertini | Luisa P. Ribeiro | F. Rabemananjara | Elodie A Courtois | S. Ndriantsoa | Tsanta Rakotonanahary
[1] J. Koella,et al. Decision‐making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians , 2018 .
[2] Rhys A. Farrer,et al. Recent Asian origin of chytrid fungi causing global amphibian declines , 2018, Science.
[3] J. Bosch,et al. Are oral deformities in tadpoles accurate indicators of anuran chytridiomycosis? , 2018, PloS one.
[4] Audrey Trochet,et al. Marking techniques in the Marbled Newt ( Triturus marmoratus ): PIT-Tag and tracking device implant protocols , 2017 .
[5] L. F. Toledo,et al. Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages , 2017 .
[6] F. Pasmans,et al. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders , 2017, Scientific Reports.
[7] Christina A. Cuomo,et al. Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi , 2017, Nature Communications.
[8] A. Bowkett,et al. Tracking the amphibian pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans using a highly specific monoclonal antibody and lateral‐flow technology , 2016, Microbial biotechnology.
[9] Rhys A. Farrer,et al. Describing Genomic and Epigenomic Traits Underpinning Emerging Fungal Pathogens. , 2017, Advances in genetics.
[10] M. Fisher,et al. Mitigating amphibian chytridiomycoses in nature , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.
[11] A. Valencia-Aguilar,et al. Amphibian‐killing chytrid in Brazil comprises both locally endemic and globally expanding populations , 2016, Molecular ecology.
[12] J. P. Collins,et al. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research , 2015, Ecology and evolution.
[13] F. Haesebrouck,et al. Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans , 2015, Scientific Reports.
[14] David M. Aanensen,et al. EpiCollect+: linking smartphones to web applications for complex data collection projects , 2014, F1000Research.
[15] M. Fisher,et al. Microscopic Aquatic Predators Strongly Affect Infection Dynamics of a Globally Emerged Pathogen , 2014, Current Biology.
[16] F. Pasmans,et al. Duplex Real-Time PCR for Rapid Simultaneous Detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in Amphibian Samples , 2013, Journal of Clinical Microbiology.
[17] M. Fisher,et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians , 2013, Proceedings of the National Academy of Sciences.
[18] Guinevere O U Wogan,et al. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians , 2013, Molecular ecology.
[19] Rhys A. Farrer,et al. Chromosomal Copy Number Variation, Selection and Uneven Rates of Recombination Reveal Cryptic Genome Diversity Linked to Pathogenicity , 2013, PLoS genetics.
[20] M. Settles,et al. Substrate-Specific Gene Expression in Batrachochytrium dendrobatidis, the Chytrid Pathogen of Amphibians , 2012, PloS one.
[21] P. Daszak,et al. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade , 2012, Molecular ecology.
[22] G. Murdoch,et al. Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. , 2012, Molecular ecology.
[23] J. Brownstein,et al. Emerging fungal threats to animal, plant and ecosystem health , 2012, Nature.
[24] John L. Spouge,et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.
[25] D. Aanensen,et al. RACE: Risk assessment of chytridiomycosis to European amphibian biodiversity , 2012 .
[26] Rhys A. Farrer,et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage , 2011, Proceedings of the National Academy of Sciences.
[27] J. McGuire,et al. Is Chytridiomycosis an Emerging Infectious Disease in Asia? , 2011, PloS one.
[28] M. Rödel,et al. Putting Toe Clipping into Perspective: A Viable Method for Marking Anurans , 2011 .
[29] P. Daszak,et al. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil , 2010 .
[30] N. Grassly,et al. Expression Profiling the Temperature-Dependent Amphibian Response to Infection by Batrachochytrium dendrobatidis , 2009, PloS one.
[31] David M. Aanensen,et al. EpiCollect: Linking Smartphones to Web Applications for Epidemiology, Ecology and Community Data Collection , 2009, PloS one.
[32] M. Fisher,et al. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. , 2009, Annual review of microbiology.
[33] S. Green,et al. Evaluation and refinement of euthanasia methods for Xenopus laevis. , 2009, Journal of the American Association for Laboratory Animal Science : JAALAS.
[34] P. Daszak,et al. Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana) , 2009 .
[35] J. Rowcliffe,et al. Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis , 2009 .
[36] M. Fisher,et al. Rapid Global Expansion of the Fungal Disease Chytridiomycosis into Declining and Healthy Amphibian Populations , 2009, PLoS pathogens.
[37] J. Stajich,et al. Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence , 2009, Molecular ecology.
[38] M. Fisher,et al. Invasive pathogens threaten species recovery programs , 2008, Current Biology.
[39] Richard Speare,et al. Survey protocol for detecting chytridiomycosis in all Australian frog populations. , 2008, Diseases of aquatic organisms.
[40] Kevin G. Smith,et al. A Conceptual Framework for Detecting Oral Chytridiomycosis in Tadpoles , 2007, Copeia.
[41] R. Speare,et al. Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis. , 2007, Diseases of aquatic organisms.
[42] M. Fisher,et al. The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species , 2007 .
[43] E. J. Gentz. Medicine and surgery of amphibians. , 2007, ILAR journal.
[44] D. Wake,et al. Confronting Amphibian Declines and Extinctions , 2006, Science.
[45] D. Wake,et al. Biodiversity. Confronting amphibian declines and extinctions. , 2006, Science.
[46] R. Speare,et al. MS-222 (tricaine methane sulfonate) does not kill the amphibian chytrid fungus Batrachochytrium dendrobatidis. , 2005, Diseases of aquatic organisms.
[47] K. Lips,et al. Alternative views of amphibian toe-clipping , 2005, Nature.
[48] B. Young,et al. Status and Trends of Amphibian Declines and Extinctions Worldwide , 2004, Science.
[49] R. May. Ecology: Ethics and amphibians , 2004, Nature.
[50] A. Hyatt,et al. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. , 2004, Diseases of aquatic organisms.
[51] Michael A. McCarthy,et al. Clarifying the effect of toe clipping on frogs with Bayesian statistics , 2004 .
[52] R. Speare,et al. Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development , 2004 .
[53] J. Piotrowski,et al. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. , 2004, Mycologia.
[54] P. Daszak,et al. Cryo-archiving of Batrachochytrium dendrobatidis and other chytridiomycetes. , 2003, Diseases of aquatic organisms.
[55] G. Fellers,et al. Oral Chytridiomycosis in the Mountain Yellow-Legged Frog (Rana muscosa) , 2001, Copeia.
[56] D. E. Scott,et al. Effects of Toe-Clipping and PIT-Tagging on Growth and Survival in Metamorphic Ambystoma opacum , 1999 .
[57] J. Longcore,et al. BATRACHOCHYTRIUM DENDROBATIDIS GEN. ET SP. NOV., A CHYTRID PATHOGENIC TO AMPHIBIANS , 1999 .
[58] D E Green,et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[59] M. Fuller,et al. Zoosporic fungi in teaching and research. , 1987 .