Clustered crystalline structures as glassy phase approximants

This paper presents some crystalline structures which can be taken as the approximants of the corresponding metallic glassy phases. Such phases have a clustered structure and preferably (but not strictly necessarily) a large unit cell. Peak intensities of their radial distribution functions (RDFs) must be integrated at a step of about 0.01 nm in order to obtain RDFs similar to those of the corresponding glassy alloys owing to a degree of disorder related to the corresponding glassy structures.

[1]  A. Wright,et al.  Diffraction studies of glass structure. I. Theory and quasi-crystalline model , 1972 .

[2]  A Simple Cluster Model for the Liquid–Glass Transition , 2004 .

[3]  F. Frank Supercooling of liquids , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[5]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[6]  Tao Zhang,et al.  Structural study of Zr60Al15Ni25 amorphous alloys with a wide supercooled liquid region by the anomalous X-ray scattering (AXS) method , 1992 .

[7]  C. Wagner Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering) , 1978 .

[8]  James A. Ibers,et al.  International tables for X-ray crystallography , 1962 .

[9]  D. T. Cromer,et al.  COMPTON SCATTERING FACTORS FOR ASPHERICAL FREE ATOMS. , 1969 .

[10]  Takeshi Egami,et al.  Atomic size effect on the formability of metallic glasses , 1984 .

[11]  W. Johnson Bulk Glass-Forming Metallic Alloys: Science and Technology , 1999 .

[12]  Akihisa Inoue,et al.  High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems , 2001 .

[13]  D. Turnbull Under what conditions can a glass be formed , 1969 .

[14]  D. Turnbull,et al.  Formation, stability and structure of palladium-silicon based alloy glasses , 1969 .

[15]  H. Chen,et al.  Thermodynamic considerations on the formation and stability of metallic glasses , 1974 .

[16]  R. M. Middleton,et al.  A refinement of the parameters of α-manganese , 1967 .

[17]  A. J. Bradley,et al.  The Crystal Structure of Formula-Manganese , 1927 .

[18]  A. Takeuchi,et al.  Noncrystalline structure created through ensemble of clusters in metastable cubic Zr2Ni structure by their random rotations and subsequent annealing , 2008 .

[19]  A. Inoue High strength bulk amorphous alloys with low critical cooling rates (overview) , 1995 .

[20]  Y. Waseda,et al.  X-ray diffraction study of amorphous Al77.5Mn22.5 and Al56Si30Mn14 alloys , 1988 .

[21]  A. Inoue,et al.  Zr–Al–Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region , 1990 .

[22]  A. Yavari,et al.  Materials science: A new order for metallic glasses , 2006, Nature.

[23]  Kenneth F. Kelton,et al.  Structural Aspects of Metallic Glasses , 2007 .

[24]  Y. Waseda,et al.  Structural Studies of New Metallic Amorphous Alloys with Wide Supercooled Liquid Region ( Overview ) , 1995 .

[25]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[26]  Yoshio Waseda,et al.  The structure of non-crystalline materials , 1980 .

[27]  J. F. Löffler Bulk metallic glasses , 2003 .

[28]  A. Inoue,et al.  Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys , 1997 .

[29]  D. V. Louzguine-Luzgin,et al.  Nano-devitrification of glassy alloys. , 2005, Journal of nanoscience and nanotechnology.

[30]  U. E. Klotz,et al.  Experimental investigation of the Cu–Ti–Zr system at 800 °C , 2007 .

[31]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[32]  A. Inoue,et al.  Nanocrystallization of Cu–(Zr or Hf)–Ti metallic glasses , 2002 .

[33]  T. Egami Universal criterion for metallic glass formation , 1997 .

[34]  A. Hirata,et al.  Local atomic structure of Pd–Ni–P bulk metallic glass examined by high-resolution electron microscopy and electron diffraction , 2006 .

[35]  W. Visscher,et al.  Random Packing of Equal and Unequal Spheres in Two and Three Dimensions , 1972, Nature.

[36]  A. Yavari,et al.  High packing density of Zr- and Pd-based bulk amorphous alloys , 1998 .

[37]  D. Miracle The efficient cluster packing model : An atomic structural model for metallic glasses , 2006 .

[38]  D. V. Louzguine-Luzgin,et al.  Real-space structural studies of Cu–Zr–Ti glassy alloy , 2008 .

[39]  M. Kramer,et al.  Anisotropic atomic structure in a homogeneously deformed metallic glass , 2007 .

[40]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[41]  J. D. Bernal,et al.  Geometry of the Structure of Monatomic Liquids , 1960, Nature.

[42]  J. Schroers,et al.  Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts , 2001 .

[43]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[44]  Daniel B. Miracle A structural model for metallic glasses , 2004 .

[45]  P. Gaskell A new structural model for transition metal–metalloid glasses , 1978, Nature.

[46]  M. Fukuhara,et al.  Specific volume and elastic properties of glassy, icosahedral quasicrystalline and crystalline phases in Zr–Ni–Cu–Al–Pd alloy , 2007 .