Development of Fibroblast Activation Protein–Targeted Radiotracers with Improved Tumor Retention

Cancer-associated fibroblasts constitute a vital subpopulation of the tumor stroma and are present in more than 90% of epithelial carcinomas. The overexpression of the serine protease fibroblast activation protein (FAP) allows a selective targeting of a variety of tumors by inhibitor-based radiopharmaceuticals (FAPIs). Of these compounds, FAPI-04 has been recently introduced as a theranostic radiotracer and demonstrated high uptake into different FAP-positive tumors in cancer patients. To enable the delivery of higher doses, thereby improving the outcome of a therapeutic application, several FAPI variants were designed to further increase tumor uptake and retention of these tracers. Methods: Novel quinoline-based radiotracers were synthesized by organic chemistry and evaluated in radioligand binding assays using FAP-expressing HT-1080 cells. Depending on their in vitro performance, small-animal PET imaging and biodistribution studies were performed on HT-1080-FAP tumor–bearing mice. The most promising compounds were used for clinical PET imaging in 8 cancer patients. Results: Compared with FAPI-04, 11 of 15 FAPI derivatives showed improved FAP binding in vitro. Of these, 7 compounds demonstrated increased tumor uptake in tumor-bearing mice. Moreover, tumor–to–normal-organ ratios were improved for most of the compounds, resulting in images with higher contrast. Notably two of the radiotracers, FAPI-21 and -46, displayed substantially improved ratios of tumor to blood, liver, muscle, and intestinal uptake. A first diagnostic application in cancer patients revealed high intratumoral uptake of both radiotracers already 10 min after administration but a higher uptake in oral mucosa, salivary glands, and thyroid for FAPI-21. Conclusion: Chemical modification of the FAPI framework enabled enhanced FAP binding and improved pharmacokinetics in most of the derivatives, resulting in high-contrast images. Moreover, higher doses of radioactivity can be delivered while minimizing damage to healthy tissue, which may improve therapeutic outcome.

[1]  Frederik L. Giesel,et al.  68Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers , 2018, The Journal of Nuclear Medicine.

[2]  S. Larson,et al.  A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[3]  D. Jäger,et al.  A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts , 2018, The Journal of Nuclear Medicine.

[4]  A. Scott,et al.  Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. , 1994, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  K. Heider,et al.  Effective Immunoconjugate Therapy in Cancer Models Targeting a Serine Protease of Tumor Fibroblasts , 2008, Clinical Cancer Research.

[6]  E. Puré,et al.  Fibroblast activation protein in remodeling tissues. , 2012, Current molecular medicine.

[7]  A. Lambeir,et al.  Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. , 2013, ACS medicinal chemistry letters.

[8]  M. Loeffler,et al.  Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. , 2006, The Journal of clinical investigation.

[9]  Thomas Lindner,et al.  Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein , 2018, The Journal of Nuclear Medicine.

[10]  J. Isaacs,et al.  Rationale Behind Targeting Fibroblast Activation Protein–Expressing Carcinoma-Associated Fibroblasts as a Novel Chemotherapeutic Strategy , 2012, Molecular Cancer Therapeutics.

[11]  E. Puré,et al.  FAP Delineates Heterogeneous and Functionally Divergent Stromal Cells in Immune-Excluded Breast Tumors , 2018, Cancer Immunology Research.

[12]  Population pharmacokinetics of antifibroblast activation protein monoclonal antibody F19 in cancer patients. , 2001, British journal of clinical pharmacology.

[13]  R. Kalluri The biology and function of fibroblasts in cancer , 2016, Nature Reviews Cancer.

[14]  P. Busek,et al.  Targeting fibroblast activation protein in cancer - Prospects and caveats. , 2018, Frontiers in bioscience.

[15]  A. Scott,et al.  Radioimmunotherapy of Fibroblast Activation Protein Positive Tumors by Rapidly Internalizing Antibodies , 2012, Clinical Cancer Research.

[16]  E. Puré,et al.  Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics , 2018, Oncogene.

[17]  T. Dønnem,et al.  Cancer Associated Fibroblasts in Stage I-IIIA NSCLC: Prognostic Impact and Their Correlations with Tumor Molecular Markers , 2015, PloS one.