Project management under uncertainty beyond beta: The generalized bicubic distribution

The beta distribution has traditionally been employed in the PERT methodology and generally used for modeling bounded continuous random variables based on expert’s judgment. The impossibility of estimating four parameters from the three values provided by the expert when the beta distribution is assumed to be the underlying distribution has been widely debated. This paper presents the generalized bicubic distribution as a good alternative to the beta distribution since, when the variance depends on the mode, the generalized bicubic distribution approximates the kurtosis of the Gaussian distribution better than the beta distribution. In addition, this distribution presents good properties in the PERT methodology in relation to moderation and conservatism criteria. Two empirical applications are presented to demonstrate the adequateness of this new distribution.

[1]  Jr. Hanna Stair,et al.  Quantitative Analysis for Management , 1982 .

[2]  Eugene D. Hahn,et al.  Robust project management with the tilted beta distribution , 2015 .

[3]  Tibor Bercsey,et al.  Time-estimation of design process based on patterns , 2010 .

[4]  C. B. Garc,et al.  Modeling Heavy-Tailed, Skewed and Peaked Uncertainty Phenomena with Bounded Support , 2011 .

[5]  Peter W. G. Morris,et al.  The management of projects , 1994 .

[6]  Salvador Cruz Rambaud,et al.  The two-sided power distribution for the treatment of the uncertainty in PERT , 2005, Stat. Methods Appl..

[7]  José García Pérez,et al.  Treatment of kurtosis in financial markets , 2012 .

[8]  M W Sasieni,et al.  A note on PERT times , 1986 .

[9]  WangXinghua FURTHER DISCUSSION ON STATISTICAL PROPERTIES OF ACTIVITY FLOW TIME IN PERT , 2002 .

[10]  T. Kotiah,et al.  Another Look at the PERT Assumptions , 1973 .

[11]  Eric R. Zieyel Operations research : applications and algorithms , 1988 .

[12]  Wayne D. Cottrell,et al.  Simplified Program Evaluation and Review Technique (PERT) , 1999 .

[13]  Herbert Moskowitz Sorondo,et al.  Investigación de operaciones , 1987 .

[14]  Mete Sirvanci,et al.  Stochastic networks and the extreme value distribution , 1990, Comput. Oper. Res..

[15]  S. Resnick Heavy tail modeling and teletraffic data: special invited paper , 1997 .

[16]  T. K. Littlefield,et al.  Reply-An Answer to Sasieni's Question on PERT Times , 1987 .

[17]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[18]  J. Berny A New Distribution Function for Risk Analysis , 1989 .

[19]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Linda Peters,et al.  Impact of Probability Distributions on Real Options Valuation , 2016 .

[21]  S. Mohan,et al.  A lognormal approximation of activity duration in PERT using two time estimates , 2007, J. Oper. Res. Soc..

[22]  Miklós Hajdu,et al.  Sensitivity analysis in PERT networks: Does activity duration distribution matter? , 2016 .

[23]  A. Barros,et al.  Probable Maximum Precipitation Estimation Using Multifractals: Application in the Eastern United States , 2003 .

[24]  David Johnson,et al.  The triangular distribution as a proxy for the beta distribution in risk analysis , 1997 .

[25]  Fred J. Molz,et al.  How well are hydraulic conductivity variations approximated by additive stable processes , 2001 .

[26]  José García Pérez,et al.  A note on the reasonableness of PERT hypotheses , 2003, Oper. Res. Lett..

[27]  C. Perry,et al.  Estimating the Mean and Variance of Subjective Distributions in PERT and Decision Analysis , 1975 .

[28]  Joseph J. Moder,et al.  Judgment Estimates of the Moments of Pert Type Distributions , 1968 .

[29]  Mats Engwall,et al.  PERT : Polaris and the realities of project execution , 2012 .

[30]  P. Kumaraswamy A generalized probability density function for double-bounded random processes , 1980 .

[31]  N. L. Johnson,et al.  Systems of Frequency Curves , 1969 .

[32]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[33]  Heleno Bolfarine,et al.  Large-Sample Inference for the Epsilon-Skew-t Distribution , 2007 .

[34]  Samuel Kotz,et al.  Beyond Beta: Other Continuous Families Of Distributions With Bounded Support And Applications , 2004 .

[35]  Eugene David Hahn,et al.  Mixture densities for project management activity times: A robust approach to PERT , 2008, Eur. J. Oper. Res..

[36]  Catalina Beatriz García García,et al.  Proposal of a new distribution in PERT methodology , 2010, Ann. Oper. Res..

[37]  I. Yang Stochastic time–cost tradeoff analysis: A distribution-free approach with focus on correlation and stochastic dominance , 2011 .

[38]  David Johnson,et al.  The robustness of mean and variance approximations in risk analysis , 1998, J. Oper. Res. Soc..

[39]  Charles A. Gallagher,et al.  Reply-A Note on PERT Assumptions , 1987 .

[40]  Kl Wong,et al.  The maximum and sum of two beta variables and the analysis of PERT networks , 1985 .

[41]  The two-sided power distribution for the treatment of the uncertainty in PERT , 2005 .

[42]  R. H. Pleguezuelo Modelos probabilísticos alternativos para el método PERT: Aplicación al análisis de inversiones , 2001 .

[43]  W. H. Parks,et al.  The Use of the Compound Poisson in Pert , 1969 .

[44]  Charles E. Clark,et al.  Letter to the Editor—The PERT Model for the Distribution of an Activity Time , 1962 .

[45]  D. Golenko-Ginzburg On the Distribution of Activity Time in PERT , 1988 .

[46]  R. Olea On the Use of the Beta Distribution in Probabilistic Resource Assessments , 2011 .

[47]  Ajiboye Sule Adegoke,et al.  Measuring Process Effectiveness Using Cpm/Pert , 2011 .

[48]  Yousry H. Abdelkader Evaluating project completion times when activity times are Weibull distributed , 2004, Eur. J. Oper. Res..

[49]  Eshetie Berhan,et al.  A Simulation of Project Completion Probability Using Different Probability Distribution Functions , 2014, AECIA.

[50]  H. Sapolsky The Polaris System Development: Bureaucratic and Programmatic Success in Government , 1972 .

[51]  Harry F. Evarts Introduction to PERT , 1964 .

[52]  Rafael Herrerías Pleguezuelo,et al.  Revisiting the PERT mean and variance , 2011, Eur. J. Oper. Res..

[53]  S. Abourizk,et al.  STATISTICAL PROPERTIES OF CONSTRUCTION DURATION DATA , 1992 .

[54]  Jerzy Kamburowski,et al.  New validations of PERT times , 1997 .

[55]  K. MacCrimmon,et al.  An Analytical Study of the PERT Assumptions , 1964 .

[56]  Samuel Kotz,et al.  Generalizations of Two-Sided Power Distributions and Their Convolution , 2003 .