Plasma manipulation techniques for positron storage in a multicell trap

New plasma manipulation techniques are described that are central to the development of a multicell Penning trap designed to increase positron storage by orders of magnitude (e.g., to particle numbers N⩾1012). The experiments are done using test electron plasmas. A technique is described to move plasmas across the confining magnetic field and to deposit them at specific radial and azimuthal positions. Techniques to fill and operate two in-line plasma cells simultaneously, and the use of 1kV confinement potentials are demonstrated. These experiments establish the capabilities to create, confine, and manipulate plasmas with the parameters required for a multicell trap; namely, particle numbers >1010 in a single cell with plasma temperature ⩽0.2eV for plasma lengths ∼10cm and radii ⩽0.2cm. The updated design of a multicell positron trap for 1012 particles is described.

[1]  C. Surko,et al.  Radial compression and torque-balanced steady states of single-component plasmas in Penning-Malmberg traps , 2006 .

[2]  R. Krause-Rehberg,et al.  EPOS—An intense positron beam project at the ELBE radiation source in Rossendorf , 2006 .

[3]  A. Wagner,et al.  Intense slow positron production at the 15 MeV LINAC at Argonne National Laboratory , 2006 .

[4]  K. Schreckenbach,et al.  First positron experiments at NEPOMUC , 2006 .

[5]  A. R. Piriz,et al.  Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. , 2005, Physical review letters.

[6]  Y. Yamazaki,et al.  New scheme for positron accumulation in ultrahigh vacuum. , 2004, Physical review letters.

[7]  C. Surko,et al.  Emerging science and technology of antimatter plasmas and trap-based beams , 2004 .

[8]  C. Surko,et al.  A multicell trap to confine large numbers of positrons , 2003 .

[9]  M. Allain,et al.  Early SPI/INTEGRAL measurements of 511 keV line emission from the 4th quadrant of the Galaxy , 2003, astro-ph/0309484.

[10]  W. Itano,et al.  Sympathetically cooled and compressed positron plasma , 2003 .

[11]  E. A. Hessels,et al.  Background-free observation of cold antihydrogen with field-ionization analysis of its states. , 2002, Physical review letters.

[12]  A. Fontana,et al.  Production and detection of cold antihydrogen atoms , 2002, Nature.

[13]  A. Mills Positronium molecule formation, Bose–Einstein condensation and stimulated annihilation , 2002 .

[14]  E. Gilson,et al.  The effect of damping on autoresonant (nonstationary) excitation , 2001 .

[15]  C. Driscoll,et al.  Confinement and manipulation of non-neutral plasmas using rotating wall electric fields , 2000 .

[16]  R. Cooks,et al.  A parallel miniature cylindrical ion trap array , 2000, Analytical chemistry.

[17]  J. Fajans,et al.  Autoresonant (nonstationary) excitation of a collective nonlinear mode , 1999 .

[18]  R. W. Gould Wave angular momentum in nonneutral plasmas , 1999 .

[19]  J. Fajans,et al.  Autoresonant (Nonstationary) Excitation of the Diocotron Mode in Non-neutral Plasmas , 1999 .

[20]  C. Driscoll,et al.  ROTATING FIELD CONFINEMENT OF PURE ELECTRON PLASMAS USING TRIVELPIECE-GOULD MODES , 1998 .

[21]  T. M. O'Neil,et al.  Thermal equilibria and thermodynamics of trapped plasmas with a single sign of charge , 1998 .

[22]  M. Charlton,et al.  Stored positrons for antihydrogen production , 1997 .

[23]  S. Howe,et al.  Antiproton portable traps and medical applications , 1997 .

[24]  V. Garkanian,et al.  Miniature, high-resolution, quadrupole mass-spectrometer array , 1997 .

[25]  C. Surko,et al.  Antimatter plasmas and antihydrogen , 1997 .

[26]  E. M. Hollmann,et al.  STEADY-STATE CONFINEMENT OF NON-NEUTRAL PLASMAS BY ROTATING ELECTRIC FIELDS , 1997 .

[27]  M. D. Tinkle,et al.  Creation and uses of positron plasmas , 1994 .

[28]  G. Gabrielse,et al.  Portable trap carries particles 5000 kilometers , 1993 .

[29]  A. Hyatt,et al.  Parallel energy analyzer for pure electron plasma devices , 1992 .

[30]  Beck,et al.  Measurement of collisional anisotropic temperature relaxation in a strongly magnetized pure electron plasma. , 1992, Physical review letters.

[31]  R. Davidson,et al.  Physics of Nonneutral Plasmas , 1991 .

[32]  C. Surko,et al.  Use of the positron as a plasma particle , 1990 .

[33]  Fine,et al.  Measurements of a nonlinear diocotron mode in pure electron plasmas. , 1989, Physical review letters.

[34]  K. Lynn,et al.  Interaction of positron beams with surfaces, thin films, and interfaces , 1988 .

[35]  K. Fine,et al.  Reduction of radial losses in a pure electron plasma , 1986 .

[36]  T. M. O'Neil Collision operator for a strongly magnetized pure electron plasma , 1983 .

[37]  C. Driscoll,et al.  Length-Dependent Containment of a Pure Electron-Plasma Column , 1983 .

[38]  A. Fontana,et al.  New source of dense, cryogenic positron plasmas. , 2005, Physical review letters.

[39]  C. Surko,et al.  New directions in antimatter chemistry and physics , 2001 .

[40]  C. Driscoll,et al.  Non-neutral plasma physics , 1988 .

[41]  A. Trivelpiece,et al.  Diagnostics of Non‐Neutral Plasmas Using an Induced‐Current Electrostatic Probe , 1971 .