COCO: Performance Assessment

We present an any-time performance assessment for benchmarking numerical optimization algorithms in a black-box scenario, applied within the COCO benchmarking platform. The performance assessment is based on runtimes measured in number of objective function evaluations to reach one or several quality indicator target values. We argue that runtime is the only available measure with a generic, meaningful, and quantitative interpretation. We discuss the choice of the target values, runlength-based targets, and the aggregation of results by using simulated restarts, averages, and empirical distribution functions.

[1]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[2]  Thomas Stützle,et al.  Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.

[3]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[4]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[5]  S S Stevens,et al.  On the Theory of Scales of Measurement. , 1946, Science.

[6]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[7]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[8]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[9]  Anne Auger,et al.  Empirical comparisons of several derivative free optimization algorithms , 2009 .

[10]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[11]  Anne Auger,et al.  COCO: The Experimental Procedure , 2016, ArXiv.

[12]  Anne Auger,et al.  COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..

[13]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[14]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[15]  Anne Auger,et al.  Biobjective Performance Assessment with the COCO Platform , 2016, ArXiv.

[16]  K. Price Differential evolution vs. the functions of the 2/sup nd/ ICEO , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[17]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .