High-Performance Concrete and Fiber-Reinforced High- Performance Concrete under Fatigue Efforts

Fatigue is the process of mechanical degradation of a material, which leads to its collapse. Repeated load applications with a maximum value lower than the one that provokes the static failure of the material, causes internal damage in the material that, progressively, reduces its mechanical capacity until it finally collapses. The increasing‐ ly widespread use of high-strength concretes permits the construction of more lightweight structures. This implies that the variable loads (which are the causes of fatigue) represent an ever larger percentage of the total load. In consequence, fatigue is an increasingly important factor in concrete structures. In some cases, it even begins to be the dimensioning load of the structure. In addition, the presence of fibers within the concrete modifies the fatigue response of the concrete. In this chapter, the classic theory of fatigue is presented in detail and the most recent developments in the study of concrete fatigue are discussed.

[1]  R Jones,et al.  A method of studying the formation of cracks in a material subjected to stress , 1952 .

[2]  D. González,et al.  Mechanical Response of Partially Prestressed Precast Concrete I-Beams after High-Range Cyclic Loading , 2015 .

[3]  John S. Popovics,et al.  Fatigue Fracture of Concrete Subjected to Biaxial Stresses in the Tensile C-T Region , 2002 .

[4]  Binsheng Zhang,et al.  Residual fatigue strength and stiffness of ordinary concrete under bending , 1997 .

[5]  Pablo de la Fuente,et al.  El proceso de fatiga del hormigón y su influencia estructural , 2011 .

[6]  Ralejs Tepfers,et al.  Astudy of the applicability to the fatigue of concrete of the Palmgren-Miner partial damage hypothesis , 1977 .

[7]  Paulo Cachim,et al.  Fatigue behavior of fiber-reinforced concrete in compression , 2002 .

[8]  G. Ruiz,et al.  A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete , 2013 .

[9]  G. Zi,et al.  Flexural fatigue behaviour of concrete under uniaxial and biaxial stress , 2013 .

[10]  P. R. Sparks,et al.  The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression , 1973 .

[11]  Ing. Kazimierz Furtak Ein verfahren zur berechnung der betonfestigkeit unter schwellenden belastungen , 1984 .

[12]  Surendra P. Shah,et al.  Fatigue response of concrete subjected to biaxial stresses in the compression-tension region , 1999 .

[13]  H. Hilsdorf,et al.  Strength and Deformation Characteristics of Plain Concrete Subjected to High Repeated and Sustained Loads , 1971 .

[14]  F. S. Ople,et al.  Probable fatigue life of plain concrete with stress gradient, ACI Proceedings, Vol. 63, Nc. 1, January 1966, Publication No. 295 , 1966 .

[15]  Alfonso Fernández-Canteli,et al.  A general model for fatigue damage due to any stress history , 2008 .

[16]  Surendra P. Shah,et al.  Fracture of Concrete Subjected to Cyclic and Sustained Loading , 1970 .

[17]  Alfonso Fernández-Canteli,et al.  Deriving the primary cumulative distribution function of fracture stress for brittle materials from 3- and 4-point bending tests , 2011 .

[18]  Jian Hui Yang,et al.  A New Model for Fatigue Life Distribution of Concrete , 2007 .

[19]  T. Hsu Fatigue of Plain Concrete , 1981 .

[20]  J. Holmén Fatigue of Concrete by Constant and Variable Amplitude loading , 1982 .

[21]  D. González,et al.  Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans , 2014 .

[22]  Jesús Mínguez,et al.  Residual modulus of elasticity and maximum compressive strain in HSC and FRHSC after high‐stress‐level cyclic loading , 2014 .

[23]  A. Siemes Miner’s Rule with Respect to Plain Concrete Variable Amplitude Tests , 1982 .

[24]  K. Wu,et al.  Effects of loading frequency and stress reversal on fatigue life of plain concrete , 1996 .

[25]  M. K. Lee,et al.  An overview of the fatigue behaviour of plain and fibre reinforced concrete , 2004 .

[26]  Todorka Paskova,et al.  Optimum Number of Specimens for Low‐Cycle Fatigue Tests of Concrete , 1994 .

[27]  B. Oh FATIGUE-LIFE DISTRIBUTIONS OF CONCRETE FOR VARIOUS STRESS LEVELS , 1991 .

[28]  David W. Fowler,et al.  BEHAVIOR AND FAILURE OF HIGH-STRENGTH CONCRETE SUBJECTED TO BIAXIAL-CYCLIC COMPRESSION LOADING. . , 1988 .

[29]  S. Rosseland,et al.  Fatigue of high strength concrete , 1990 .

[30]  Alfonso Fernández-Canteli,et al.  A statistical fatigue model covering the tension and compression Wöhler fields , 2009 .

[31]  Oral Büyüköztürk,et al.  Concrete in Biaxial Cyclic Compression , 1984 .

[32]  R. Tepfers,et al.  Fatigue Strength of Plain, Ordinary,and Lightweight Concrete , 1979 .

[33]  Z. Bažant Concrete fracture models: testing and practice , 2002 .

[34]  Christian Meyer,et al.  DAMAGE ACCUMULATION IN CONCRETE WITH AND WITHOUT FIBER REINFORCEMENT , 1993 .

[35]  Surendra P. Shah,et al.  BIAXIAL TENSION FATIGUE RESPONSE OF CONCRETE , 2003 .

[36]  H.A.W. Cornelissen,et al.  Fatigue Failure of Concrete in Tension , 1984 .

[37]  F. E. Richart,et al.  Failure of plain and spirally reinforced concrete in compression , 1929 .

[38]  H. Hilsdorf,et al.  FATIGUE STRENGTH OF CONCRETE UNDER VARYING FLEXURAL STRESSES , 1966 .

[39]  G. Ruiz,et al.  Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete , 2015 .

[40]  John Washburn Murdock,et al.  A critical review of research on fatigue of plain concrete , 1965 .

[41]  Yupu Song,et al.  Fatigue capacity of plain concrete under fatigue loading with constant confined stress , 2011 .

[42]  H.A.W. Cornelissen,et al.  Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading , 1984 .

[43]  Ttc Hsu,et al.  BIAXIAL COMPRESSION FATIGUE AND DISCONTINUITY OF CONCRETE , 1988 .

[44]  Carlos Zanuy,et al.  Sectional Analysis of Concrete Structures under Fatigue Loading , 2009 .

[45]  J M Hanson,et al.  CONSIDERATIONS FOR DESIGN OF CONCRETE STRUCTURES SUBJECTED TO FATIGUE LOADING , 1974 .

[46]  Todorka Paskova,et al.  LOW-CYCLE FATIGUE OF PLAIN AND FIBER-REINFORCED CONCRETE , 1997 .