Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data

Motivation: High-throughput sequencing (HTS) technologies have made low-cost sequencing of large numbers of samples commonplace. An explosion in the type, not just number, of sequencing experiments has also taken place including genome re-sequencing, population-scale variation detection, whole transcriptome sequencing and genome-wide analysis of protein-bound nucleic acids. Results: We present Artemis as a tool for integrated visualization and computational analysis of different types of HTS datasets in the context of a reference genome and its corresponding annotation. Availability: Artemis is freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute websites: http://www.sanger.ac.uk/resources/software/artemis/. Contact: artemis@sanger.ac.uk; tjc@sanger.ac.uk

[1]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[2]  Heng Li,et al.  Tabix: fast retrieval of sequence features from generic TAB-delimited files , 2011, Bioinform..

[3]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[4]  Heinrich Magnus Manske,et al.  LookSeq: a browser-based viewer for deep sequencing data. , 2009, Genome research.

[5]  Gabor T. Marth,et al.  EagleView: a genome assembly viewer for next-generation sequencing technologies. , 2008, Genome research.

[6]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[7]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[8]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[9]  J. Burton,et al.  Rapid Pneumococcal Evolution in Response to Clinical Interventions , 2011, Science.

[10]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[11]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[12]  John P. Overington,et al.  The genome of the blood fluke Schistosoma mansoni , 2009, Nature.

[13]  Matthew Berriman,et al.  BamView: viewing mapped read alignment data in the context of the reference sequence , 2010, Bioinform..

[14]  Matthew Berriman,et al.  Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology , 2010, Bioinform..

[15]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[16]  R. Gibbs,et al.  The Drosophila melanogaster transcriptome by paired-end RNA sequencing. , 2011, Genome research.

[17]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[18]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[19]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[20]  Eduardo P C Rocha,et al.  The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients , 2008, Journal of bacteriology.

[21]  Karsten M. Borgwardt,et al.  The genome of the simian and human malaria parasite Plasmodium knowlesi , 2008, Nature.

[22]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[23]  Julian Parkhill,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[24]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[25]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[26]  Xuehui Huang,et al.  Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. , 2010, Genome research.

[27]  N. Thomson,et al.  Studying bacterial transcriptomes using RNA-seq , 2010, Current opinion in microbiology.

[28]  Brian White,et al.  Comparative genomic analysis of three Leishmania species that cause diverse human disease , 2007, Nature Genetics.

[29]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[30]  Ann E. Loraine,et al.  The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets , 2009, Bioinform..

[31]  Michael Brudno,et al.  Savant: genome browser for high-throughput sequencing data , 2010, Bioinform..

[32]  Samuel A. Assefa,et al.  New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq , 2010, Molecular microbiology.

[33]  Xiaokun Li,et al.  MagicViewer: integrated solution for next-generation sequencing data visualization and genetic variation detection and annotation , 2010, Nucleic Acids Res..

[34]  Paul D. Shaw,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[35]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[36]  G. Sherlock,et al.  Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. , 2010, Genome research.

[37]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[38]  Ben Shneiderman,et al.  Hawkeye: an interactive visual analytics tool for genome assemblies , 2007, Genome Biology.

[39]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .