Parallel computation of magnetic field parameters from HMI active region patches

Magnetic parameters are crucial to analyze and forecast solar events such as solar flares and coronal mass ejections. These parameters can be computed from vector magnetogram data collected from the solar surface. We propose a tool to compute these magnetic parameters from solar image data files in parallel using multi-threading and GPUs. The architecture of the proposed solar magnetic parameter computational tool is discussed in detail. We use the images from Spaceweather HMI Active Region Patches (SHARP) data available from JSOC to perform our experiments. We perform exhaustive analysis on the parameters used in the architecture. Run times of magnetic parameter generation are compared across serial execution codes (implemented in Python and C++) and parallel code (implemented in python and C++ using OpenACC). We conclude by showing that parallel computation of magnetic parameters using GPUs is much faster when compared to serial execution.

[1]  Yanmei Cui,et al.  Correlation between Solar Flare Productivity and Photospheric Magnetic Field Properties II. Magnetic Gradient and Magnetic Shear , 2007 .

[2]  J. D. Ponz,et al.  The FITS image extension , 1994 .

[3]  Rami Qahwaji,et al.  Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection , 2011, Solar Physics.

[4]  Haimin Wang,et al.  The Statistical Relationship between the Photospheric Magnetic Parameters and the Flare Productivity of Active Regions , 2006 .

[5]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches , 2014, 1404.1879.

[6]  C. J. Wolfson,et al.  Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .

[7]  Monica G. Bobra,et al.  SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM , 2014, 1411.1405.

[8]  Liyun Zhang,et al.  Correlation Between Solar Flare Productivity and Photospheric Magnetic Field Properties , 2006 .

[9]  Jesper Schou,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance , 2014, 1404.1881.

[10]  H. Carmichael,et al.  A process for flares , 1964 .

[11]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[12]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[13]  Christian Terboven,et al.  OpenACC - First Experiences with Real-World Applications , 2012, Euro-Par.

[14]  Soukaina Filali Boubrahimi,et al.  An Integrated Solar Database (ISD) with Extended Spatiotemporal Querying Capabilities , 2017, SSTD.

[15]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[16]  Xin Huang,et al.  SHORT-TERM SOLAR FLARE LEVEL PREDICTION USING A BAYESIAN NETWORK APPROACH , 2010 .

[17]  John G. Kappenman,et al.  An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun‐Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms , 2005 .

[18]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.