Search reliability and search efficiency of combined Lévy–Brownian motion: long relocations mingled with thorough local exploration

A combined dynamics consisting of Brownian motion and L\'evy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economically of such dynamics thus poses an important problem. Here we model this dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased Brownian motion and L\'evy flights. By solving this equation both analytically and numerically we show that the superposition of recurrent Brownian motion and L\'evy flights with stable exponent $\alpha<1$, by itself implying zero probability of hitting a point on a line, lead to transient motion with finite probability of hitting any point on the line. We present results for the exact dependence of the values of both the search reliability and the search efficiency on the distance between the starting and target positions as well as the choice of the scaling exponent $\alpha$ of the L\'evy flight component.

[1]  Angelika Mueller,et al.  Principles Of Random Walk , 2016 .

[2]  Fractional diffusion equation for an n-dimensional correlated Lévy walk. , 2016, Physical review. E.

[3]  G. Wuite,et al.  How DNA coiling enhances target localization by proteins , 2008, Proceedings of the National Academy of Sciences.

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  E. Revilla,et al.  A movement ecology paradigm for unifying organismal movement research , 2008, Proceedings of the National Academy of Sciences.

[6]  R. Metzler,et al.  Facilitated diffusion with DNA coiling , 2009, Proceedings of the National Academy of Sciences.

[7]  R. Metzler,et al.  Real sequence effects on the search dynamics of transcription factors on DNA , 2015, Scientific Reports.

[8]  Andy M. Reynolds,et al.  Adaptive Lévy walks can outperform composite Brownian walks in non-destructive random searching scenarios , 2009 .

[9]  Bruce J. West,et al.  Linear systems with Lévy fluctuations , 1982 .

[10]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[11]  F. Weissing,et al.  How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement , 2014, Proceedings of the Royal Society B: Biological Sciences.

[12]  David Stuart Robertson,et al.  Enacting the Distributed Business Workflows Using BPEL4WS on the Multi-agent Platform , 2005, MATES.

[13]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[14]  KARL PEARSON,et al.  The Problem of the Random Walk , 1905, Nature.

[15]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[16]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.

[17]  Nicolas E. Humphries,et al.  Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. , 2012, The Journal of animal ecology.

[18]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  S. Benhamou HOW MANY ANIMALS REALLY DO THE LÉVY WALK , 2007 .

[21]  O. Bénichou,et al.  Classes of fast and specific search mechanisms for proteins on DNA , 2011, Reports on progress in physics. Physical Society.

[22]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[23]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[24]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[25]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[26]  E. Agliari,et al.  Lévy flights with power-law absorption. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Sergei Petrovskii,et al.  Comment on : “ Lévy walks evolve through interaction between movement and environmental complexity ” , 2011 .

[28]  Daniel Campos,et al.  Stochastic Foundations in Movement Ecology , 2014 .

[29]  D. Brockmann Following the money , 2010 .

[30]  Nicolas E. Humphries,et al.  Foraging success of biological Lévy flights recorded in situ , 2012, Proceedings of the National Academy of Sciences.

[31]  Frederic Bartumeus,et al.  Erratum: Optimizing the Encounter Rate in Biological Interactions: Lévy versus Brownian Strategies [Phys. Rev. Lett.88, 097901 (2002)] , 2002 .

[32]  Ralf Metzler,et al.  Optimal target search on a fast-folding polymer chain with volume exchange. , 2005, Physical review letters.

[33]  Nico Roos,et al.  Multiagent System Technologies , 2010, Lecture Notes in Computer Science.

[34]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[35]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[36]  Aleksei V. Chechkin,et al.  First passage and arrival time densities for Lévy flights and the failure of the method of images , 2003 .

[37]  H. Stanley,et al.  The Physics of Foraging: An Introduction to Random Searches and Biological Encounters , 2011 .

[38]  A. Godec,et al.  A single predator charging a herd of prey: effects of self volume and predator–prey decision-making , 2016, 1609.07855.

[39]  Sidney Redner,et al.  First-passage phenomena and their applications , 2014 .

[40]  Ralf Metzler,et al.  Lévy strategies in intermittent search processes are advantageous , 2008, Proceedings of the National Academy of Sciences.

[41]  Michael J. Plank,et al.  Lévy or not? analysing positional data from animal movement paths , 2013 .

[42]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[43]  Aleksei V. Chechkin,et al.  Lévy flights do not always optimize random blind search for sparse targets , 2014, Proceedings of the National Academy of Sciences.

[44]  George Weiss,et al.  Random walks and random environments, volume 1: Random walks , 1996 .

[45]  Diana Hicks,et al.  Is big really better , 1989 .

[46]  USA,et al.  Efficient search by optimized intermittent random walks , 2009, 0909.1048.

[47]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[48]  M. E. Wosniack,et al.  Efficient search of multiple types of targets. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[50]  P. V. von Hippel,et al.  Facilitated Target Location in Biological Systems* , 2022 .

[51]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[52]  F Bartumeus,et al.  Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. , 2002, Physical review letters.

[53]  Sabrina Fossette,et al.  High activity and Lévy searches: jellyfish can search the water column like fish , 2012, Proceedings of the Royal Society B: Biological Sciences.

[54]  Anatoly B Kolomeisky,et al.  Physics of protein-DNA interactions: mechanisms of facilitated target search. , 2011, Physical chemistry chemical physics : PCCP.

[55]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[56]  A. Chechkin,et al.  Space-fractional Fokker–Planck equation and optimization of random search processes in the presence of an external bias , 2014, 1402.2772.

[57]  Ralf Metzler,et al.  Leapover lengths and first passage time statistics for Lévy flights. , 2007, Physical review letters.

[58]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[59]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[60]  Alla Mashanova,et al.  Evidence for intermittency and a truncated power law from highly resolved aphid movement data , 2010, Journal of The Royal Society Interface.

[61]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. M. Lee,et al.  Random Walks and Random Environments: Volume 1: Random Walks , 1995 .

[63]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[64]  L. Mirny,et al.  How gene order is influenced by the biophysics of transcription regulation , 2007, Proceedings of the National Academy of Sciences.

[65]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[66]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[68]  F. Provenza,et al.  The Physics of Foraging , 1999 .

[69]  Katja Lindenberg,et al.  Intermittent random walks for an optimal search strategy: one-dimensional case , 2007 .

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  J. Klafter,et al.  Natural and Modified Forms of Distributed-Order Fractional Diffusion Equations , 2011 .

[72]  Stefano Focardi,et al.  Adaptive Lévy Walks in Foraging Fallow Deer , 2009, PloS one.

[73]  F. van Langevelde,et al.  Patch density determines movement patterns and foraging efficiency of large herbivores , 2007 .

[74]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[75]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[76]  J. Klafter,et al.  L\'evy walks , 2014, 1410.5100.

[77]  Ralf Metzler,et al.  Distance matters: the impact of gene proximity in bacterial gene regulation. , 2013, Physical review letters.

[78]  Alex James,et al.  Efficient or Inaccurate? Analytical and Numerical Modelling of Random Search Strategies , 2010, Bulletin of mathematical biology.

[79]  R. Metzler,et al.  In Vivo Facilitated Diffusion Model , 2013, PloS one.

[80]  Ilya Pavlyukevich Lévy flights, non-local search and simulated annealing , 2007, J. Comput. Phys..