Online Submission ID : 0 Orion : A System for Modeling , Transformation and Visualization of Multidimensional Heterogeneous Networks

The study of complex activities such as scientific production and software development often requires modeling connections among heterogeneous entities including people, institutions, and artifacts. Despite advances in algorithms and visualization techniques for understanding such social networks, the process of constructing network models and performing exploratory analysis remains difficult and time-consuming. In this article, we present Orion, a system for interactive modeling, transformation, and visualization of network data. Orion’s interface enables the rapid manipulation of large graphs—including the specification of complex linking relationships—using simple drag-and-drop operations with desired node types. Orion maps these user interactions to statements in a declarative workflow language that incorporates both relational operators (e.g. selection, aggregation, and joins) and network analytics (e.g. centrality measures). We demonstrate how these features enable analysts to flexibly construct and compare networks in domains such as online health communities, electronic medical records, academic collaboration, and distributed software development.

[1]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[2]  Ben Shneiderman,et al.  Network Visualization by Semantic Substrates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Jeffrey Heer,et al.  Software Design Patterns for Information Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[6]  Leland Wilkinson,et al.  The Grammar of Graphics (Statistics and Computing) , 2005 .

[7]  Ambuj K. Singh,et al.  Graphs-at-a-time: query language and access methods for graph databases , 2008, SIGMOD Conference.

[8]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[9]  Ben Shneiderman,et al.  Analyzing Social Media Networks with NodeXL: Insights from a Connected World , 2010 .

[10]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[11]  Jeffrey Heer,et al.  Declarative Language Design for Interactive Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[12]  Catherine Plaisant,et al.  NetLens: Iterative Exploration of Content-Actor Network Data , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[13]  Jeffrey Heer,et al.  Visualizing collaboration and influence in the open-source software community , 2011, MSR '11.

[14]  Jeffrey Heer,et al.  Wrangler: interactive visual specification of data transformation scripts , 2011, CHI.

[15]  Ben Shneiderman,et al.  Systematic yet flexible discovery: guiding domain experts through exploratory data analysis , 2008, IUI '08.

[16]  Charu C. Aggarwal,et al.  Managing and Mining Graph Data , 2010, Managing and Mining Graph Data.

[17]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[18]  Hans-Jörg Schulz,et al.  Honeycomb: Visual Analysis of Large Scale Social Networks , 2009, INTERACT.

[19]  Vladimir Batagelj,et al.  Pajek - Program for Large Network Analysis , 1999 .

[20]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jeffrey Heer,et al.  Orion: A system for modeling, transformation and visualization of multidimensional heterogeneous networks , 2011, IEEE VAST.

[22]  John T. Stasko,et al.  Network-based visual analysis of tabular data , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[23]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[24]  Nathalie Henry,et al.  Visually exploring large social networks , 2007 .

[25]  Jimeng Sun,et al.  MatrixFlow: Temporal Network Visual Analytics to Track Symptom Evolution during Disease Progression , 2012, AMIA.

[26]  Ben Shneiderman,et al.  ManyNets: an interface for multiple network analysis and visualization , 2010, CHI.

[27]  David Auber,et al.  From Databases to Graph Visualization , 2010, 2010 14th International Conference Information Visualisation.

[28]  Leland Wilkinson The Grammar of Graphics , 1999 .

[29]  Jeffrey Heer,et al.  Protovis: A Graphical Toolkit for Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[30]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[31]  Mary Czerwinski,et al.  Understanding research trends in conferences using paperLens , 2005, CHI Extended Abstracts.

[32]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[34]  Eytan Adar,et al.  GUESS: a language and interface for graph exploration , 2006, CHI.

[35]  Ben Shneiderman,et al.  Interactive Entity Resolution in Relational Data: A Visual Analytic Tool and Its Evaluation , 2008, IEEE Transactions on Visualization and Computer Graphics.