Observation of topological transitions in interacting quantum circuits
暂无分享,去创建一个
R. Barends | A. Megrant | D. Sank | Z. Chen | A. Dunsworth | J. Wenner | B. Chiaro | A. N. Cleland | C. Quintana | P. Roushan | Yu Chen | R. Barends | Yu Chen | J. Kelly | A. Megrant | P. O’Malley | D. Sank | A. Vainsencher | J. Wenner | T. White | A. Cleland | J. Martinis | B. Campbell | Z. Chen | B. Chiaro | A. Dunsworth | E. Jeffrey | J. Mutus | C. Neill | C. Quintana | P. Roushan | Zijun Chen | A. Polkovnikov | M. Fang | M. Kolodrubetz | N. Leung | M. Kolodrubetz | N. Leung | E. Jeffrey | A. Vainsencher | J. Kelly | J. Mutus | C. Neill | T. White | B. Campbell | Michael T. Fang | M. Fang | P. J. J. O’Malley | A. Polkovnikov | J. M. Martinis
[1] K. Cheng. Theory of Superconductivity , 1948, Nature.
[2] R. Barends,et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.
[3] Haldane,et al. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.
[4] Erik Lucero,et al. Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.
[5] B. Bernevig. Topological Insulators and Topological Superconductors , 2013 .
[6] F. Wilczek,et al. Geometric Phases in Physics , 1989 .
[7] C. Kane,et al. Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.
[8] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[9] A N Cleland,et al. Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.
[10] A. Polkovnikov,et al. Dynamical quantum Hall effect in the parameter space , 2011, Proceedings of the National Academy of Sciences.
[11] J. García-Ripoll,et al. Detection of Chern numbers and entanglement in topological two-species systems through subsystem winding numbers , 2014, 1402.3222.
[12] P. Dirac. Quantised Singularities in the Electromagnetic Field , 1931 .
[13] R. J. Schoelkopf,et al. Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.
[14] J. Neumann,et al. Über merkwürdige diskrete Eigenwerte , 1993 .
[15] Shou-Cheng Zhang,et al. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.
[16] Anatoli Polkovnikov,et al. Measuring a topological transition in an artificial spin-1/2 system. , 2014, Physical review letters.
[17] Yize Jin,et al. Topological insulators , 2014, Topology in Condensed Matter.
[18] F. Nori,et al. Quantum Simulators , 2009, Science.
[19] G. Dorda,et al. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .
[20] Nonadiabatic dynamics of a slowly driven dissipative two-level system , 2014, 1402.4210.
[21] Joel E Moore,et al. The birth of topological insulators , 2010, Nature.
[22] Charles Neill,et al. Tunable coupler for superconducting Xmon qubits: Perturbative nonlinear model , 2014, 1405.1915.
[23] Immanuel Bloch,et al. Direct measurement of the Zak phase in topological Bloch bands , 2012, Nature Physics.
[24] John M. Martinis,et al. Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .
[25] Erik Lucero,et al. Emulation of a Quantum Spin with a Superconducting Phase Qudit , 2009, Science.
[26] Marco Lanzagorta,et al. Quantum Simulators , 2013 .
[27] W. Marsden. I and J , 2012 .
[28] D. C. Tsui,et al. Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .
[29] D. Thouless,et al. Quantized Hall conductance in a two-dimensional periodic potential , 1992 .
[30] R. Feynman. Simulating physics with computers , 1999 .
[31] A. Houck,et al. On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.