High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling

[1]  Petr Šittner,et al.  Recoverability of large strains and deformation twinning in martensite during tensile deformation of NiTi shape memory alloy polycrystals , 2019, Acta Materialia.

[2]  L. Heller,et al.  Temperature and microstructure dependence of localized tensile deformation of superelastic NiTi wires , 2019, Materials & Design.

[3]  P. Sedlák,et al.  Beyond the strain recoverability of martensitic transformation in NiTi , 2019, International Journal of Plasticity.

[4]  I. Karaman,et al.  Two way shape memory effect in NiTiHf high temperature shape memory alloy tubes , 2019, Acta Materialia.

[5]  N. Schell,et al.  Laser welding of precipitation strengthened Ni-rich NiTiHf high temperature shape memory alloys: Microstructure and mechanical properties , 2019, Materials & Design.

[6]  L. Heller,et al.  On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling , 2018, Progress in Materials Science.

[7]  I. Karaman,et al.  Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy , 2018, Acta Materialia.

[8]  I. Karaman,et al.  Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys , 2018, Acta Materialia.

[9]  F. Ren,et al.  Size effect on the mechanical behavior of single crystalline Fe-31.2Pd (at.%) micropillars , 2018, Scripta Materialia.

[10]  J.P. Oliveira,et al.  Laser welding of Cu-Al-Be shape memory alloys: Microstructure and mechanical properties , 2018, Materials & Design.

[11]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[12]  P. Zeng,et al.  In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy , 2017 .

[13]  M. Fu,et al.  Effect of low-temperature aging treatment on thermally- and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires , 2017 .

[14]  D. Lagoudas,et al.  Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys , 2017 .

[15]  Yunzhi Wang,et al.  Novel B19′ strain glass with large recoverable strain , 2017 .

[16]  F. Sun,et al.  On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires , 2017 .

[17]  Xingjun Liu,et al.  Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys , 2017 .

[18]  K. Tsuchiya,et al.  Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy , 2017 .

[19]  C. Tasan,et al.  Complexion-mediated martensitic phase transformation in Titanium , 2017, Nature Communications.

[20]  D. Xue,et al.  Dislocation induced strain glass in Ti50Ni45Fe5 alloy , 2016 .

[21]  Haluk E. Karaca,et al.  Tensile shape memory behavior of Ni 50.3 Ti 29.7 Hf 20 high temperature shape memory alloys , 2016 .

[22]  Z. Moumni,et al.  Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy , 2016 .

[23]  Rosa Maria Mendes Miranda,et al.  Martensite stabilization during superelastic cycling of laser welded NiTi plates , 2016 .

[24]  G. Eggeler,et al.  Twinning-Induced Elasticity in NiTi Shape Memory Alloys , 2016, Shape Memory and Superelasticity.

[25]  Z. Zeng,et al.  Laser welded superelastic Cu–Al–Mn shape memory alloy wires , 2016 .

[26]  P. Šittner,et al.  Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction , 2015 .

[27]  D. Dye Shape memory alloys: Towards practical actuators. , 2015, Nature materials.

[28]  A. Ahadi,et al.  Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction , 2015 .

[29]  H. Liermann,et al.  Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction , 2015, Journal of synchrotron radiation.

[30]  A. Ahadi,et al.  Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi , 2014 .

[31]  S. Bhaumik,et al.  Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability , 2014 .

[32]  G. Eggeler,et al.  Ingot metallurgy and microstructural characterization of Ti–Ta alloys , 2014 .

[33]  T. Lookman,et al.  Nonhysteretic superelasticity of shape memory alloys at the nanoscale. , 2013, Physical review letters.

[34]  A. Ahadi,et al.  Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size , 2013 .

[35]  Othmane Benafan,et al.  Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi , 2012 .

[36]  P. Nielaba,et al.  Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles , 2011, 1110.2344.

[37]  Bjørn Clausen,et al.  On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi , 2011 .

[38]  Ibrahim Karaman,et al.  Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation , 2011 .

[39]  X. Ren,et al.  Stress-induced strain glass to martensite (R) transition in a Ti 50 Ni 44.5 Fe 5.5 alloy , 2011 .

[40]  I. Karaman,et al.  Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys , 2011 .

[41]  Yu Wang,et al.  Strain glass in Fe-doped Ti–Ni , 2010 .

[42]  Yu Wang,et al.  Strain glass in doped Ti50(Ni50−xDx) (D = Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems , 2010 .

[43]  Steven M. Tuominen,et al.  High temperature shape memory alloys , 2010 .

[44]  Fan Yang,et al.  Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys , 2010 .

[45]  Luca Lutterotti,et al.  Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction , 2010 .

[46]  X. Ren,et al.  Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass , 2010 .

[47]  Bjørn Clausen,et al.  Measurement of the lattice plane strain and phase fraction evolution during heating and cooling in shape memory NiTi , 2009 .

[48]  Keikichi G. Nakamura,et al.  Does order-disorder transition exist in near-stoichiometric Ti-Ni shape memory alloys? , 2007 .

[49]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[50]  X. Ren,et al.  Shape memory effect and superelasticity in a strain glass alloy. , 2006, Physical review letters.

[51]  K. Tsuchiya,et al.  Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation , 2006 .

[52]  Shuichi Miyazaki,et al.  Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys , 2006 .

[53]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[54]  Hideki Nagai,et al.  Additive nature of recovery strains in heavily cold-worked shape memory alloys , 2003 .

[55]  Y. Liu,et al.  On the deformation of the twinned domain in Niti shape memory alloys , 2000 .

[56]  Yinong Liu,et al.  Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi , 2000 .

[57]  Yufeng Zheng,et al.  The microstructure and linear superelasticity of cold-drawn TiNi alloy , 2000 .

[58]  F. Haider,et al.  The role of the martensite transformation for the mechanical amorphisation of NiTi , 1997 .

[59]  A. Chiba,et al.  High resolution electron microscopy studies of twin boundary structures in B19′ martensite in the Ti-Ni shape memory alloy , 1995 .

[60]  H. Lin,et al.  The tensile behavior of a cold-rolled and reverse-transformed equiatomic TiNi alloy , 1994 .

[61]  H. Lin,et al.  Determination of heat of transformation in a cold-rolled martensitic tini alloy , 1993 .

[62]  Hsin-Chih Lin,et al.  The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy , 1991 .

[63]  Shuichi Miyazaki,et al.  The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals , 1984 .

[64]  Xingjun Liu,et al.  Ni56Mn25-xCrxGa19 (x=0, 2, 4, 6) high temperature shape memory alloys , 2011 .

[65]  S. Miyazaki,et al.  Development of high temperature Ti-Ta shape memory alloys , 2009 .

[66]  H. Lin Determination of Heat of Transformation in a Cold-Rolled Martensitic TiNi Alloy , 2007 .

[67]  Yinong Liu,et al.  Effect of deformation by stress-induced martensitic transformation on the transformation behaviour of NiTi , 2000 .

[68]  Jan Van Humbeeck,et al.  High Temperature Shape Memory Alloys , 1999 .

[69]  Shuichi Miyazaki,et al.  Mechanism of the As temperature increase by pre-deformation in thermoelastic alloys , 1993 .

[70]  C. Rao Phase transitions in solids : an approach to the study of the chemistry and physics of solids / C.N.R. Rao, K.J. Rao , 1978 .