REDUCTION IN OPTIMAL CONTROL THEORY
暂无分享,去创建一个
[1] Andrew D. Lewis. The geometry of the maximum principle for ane connection control systems , 2000 .
[2] Alan Weinstein,et al. Geometric Models for Noncommutative Algebras , 1999 .
[3] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[4] R. Montgomery. Isoholonomic problems and some applications , 1990 .
[5] J. Cortés,et al. The consistency problem in optimal control: The degenerate case , 2003 .
[6] J. Marsden,et al. Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .
[7] A. Agrachev,et al. SYMPLECTIC GEOMETRY AND NECESSARY CONDITIONS FOR OPTIMALITY , 1992 .
[8] H. Sussmann. Orbits of families of vector fields and integrability of distributions , 1973 .
[9] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[10] V. Jurdjevic. Geometric control theory , 1996 .
[11] A. Isidori. Nonlinear Control Systems , 1985 .
[12] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[13] Carlos López,et al. Sub-Finslerian Metric Associated to an Optimal Control System , 2000, SIAM J. Control. Optim..
[14] Eduardo Martínez. Lagrangian Mechanics on Lie Algebroids , 2001 .
[15] E. Mart. SUB-FINSLERIAN METRIC ASSOCIATED TO AN OPTIMAL CONTROL SYSTEM ∗ , 2000 .
[16] Optimal Control of a Rigid Body with Two Oscillators , 1993 .