Mutualistic interactions between ants and fungi: A review

Abstract The large amount of dead plant biomass caused by the final extinction events triggered a fungi proliferation that mostly differentiated into saprophytes degrading organic matter; others became parasites, predators, likely commensals, and mutualists. Among the last, many have relationships with ants, the most emblematic seen in the Neotropical myrmicine Attina that cultivate Basidiomycota for food. Among them, leaf‐cutting, fungus‐growing species illustrate an ecological innovation because they grow fungal gardens from fresh plant material rather than arthropod frass and plant debris. Myrmecophytes shelter “plant‐ants” in hollow structures, the domatia, whose inner walls are lined with thin‐walled Ascomycota hyphae that, in certain cases, are eaten by the ants, showing a form of convergence. Typically, these Ascomycota have antibacterial properties illustrating cases of farming for protection. Ant gardens, or mutualistic associations between certain ant species and epiphytes, shelter endophytic fungi that promote the growth of the epiphytes. Because the cell walls of certain Ascomycota hyphae remain sturdy after the death of the mycelium, they form resistant fibers used by ants to reinforce their constructions (e.g., galleries, shelters for tended hemipterans, and carton nests). Thus, we saw cases of “true” fungal agriculture involving planting, cultivating, and harvesting Basidiomycota for food with Attina. A convergence with “plant‐ants” feeding on Ascomycota whose antibacterial activity is generally exploited (i.e., farming for protection). The growth of epiphytes was promoted by endophytic fungi in ant gardens. Finally, farming for structural materials occurred with, in one case, a leaf‐cutting, fungus‐growing ant using Ascomycota fibers to reinforce its nests.

[1]  M. Tindo,et al.  An Old World leaf‐cutting, fungus‐growing ant: A case of convergent evolution , 2023, Ecology and evolution.

[2]  Vivien Rossi,et al.  Host‐tree selection by the ant garden‐initiating arboreal ponerine Neoponera goeldii , 2022, Ecology.

[3]  Bernardo Janko Gonçalves Biesseck,et al.  Remote detection and measurement of leaf-cutting ant nests using deep learning and an unmanned aerial vehicle , 2022, Comput. Electron. Agric..

[4]  Z. Oumar,et al.  Canopy defoliation by leaf-cutting ants in eucalyptus plantations inferred by unsupervised machine learning applied to remote sensing , 2022, Precision Agriculture.

[5]  L. Keller,et al.  Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex eusociality , 2022, Current Biology.

[6]  M. Purugganan What is domestication? , 2022, Trends in ecology & evolution.

[7]  B. Corbara,et al.  Ants mediate community composition of root‐associated fungi in an ant‐plant mutualism , 2022, Biotropica.

[8]  V. Mayer,et al.  Black fungi and ants: a genomic comparison of species inhabiting carton nests versus domatia , 2022, IMA Fungus.

[9]  T. Schultz,et al.  The Last Piece of the Puzzle? Phylogenetic Position and Natural History of the Monotypic Fungus-Farming Ant Genus Paramycetophylax (Formicidae: Attini) , 2022, Insect Systematics and Diversity.

[10]  Lingjun Li,et al.  Symbiont-Mediated Protection of Acromyrmex Leaf-Cutter Ants from the Entomopathogenic Fungus Metarhizium anisopliae , 2021, mBio.

[11]  D. Park,et al.  Material Function of Mycelium-Based Bio-Composite: A Review , 2021, Frontiers in Materials.

[12]  T. Schultz,et al.  Phylogenomic reconstruction reveals new insights into the evolution and biogeography of Atta leaf‐cutting ants (Hymenoptera: Formicidae) , 2021, Systematic Entomology.

[13]  A. Rodrigues,et al.  Yeasts in the attine ant–fungus mutualism: Diversity, functional roles, and putative biotechnological applications , 2021, Yeast.

[14]  A. Matuszewska,et al.  Lasius fuliginosus Nest Carton as a Source of New Promising Bioactive Extracts with Chemopreventive Potential , 2021, International journal of molecular sciences.

[15]  H. Ozier-Lafontaine,et al.  Control of Amazonian Leaf-Cutting Ants (Hymenoptera: Formicidae): A Multi-criteria Analysis , 2021, Journal of Economic Entomology.

[16]  D. McKey,et al.  The symbiosis between Philidris ants and the ant-plant Dischidia major includes fungal and algal associates , 2021, Symbiosis.

[17]  V. Mayer,et al.  Novel black yeast-like species in chaetothyriales with ant-associated life styles. , 2020, Fungal biology.

[18]  M. P. Cristiano,et al.  Amoimyrmex Cristiano, Cardoso & Sandoval, gen. nov. (Hymenoptera: Formicidae): a new genus of leaf‐cutting ants revealed by multilocus molecular phylogenetic and morphological analyses , 2020 .

[19]  B. Wilkinson,et al.  Chemical warfare between fungus-growing ants and their pathogens , 2020, Current opinion in chemical biology.

[20]  L. Lach,et al.  Consistent patterns of fungal communities within ant-plants across a large geographic range strongly suggest a multipartite mutualism , 2020, Mycological Progress.

[21]  K. Berry Evidence for fungal proliferation following the Cretaceous/Paleogene mass-extinction event, based on chemostratigraphy in the Raton and Powder River basins, western North America , 2020 .

[22]  F. Vega,et al.  Ecology and Evolution of Insect-Fungus Mutualisms. , 2020, Annual review of entomology.

[23]  T. Schultz Fungus-Farming Ants (Attini in Part) , 2019, Encyclopedia of Social Insects.

[24]  Angelo D. Armijos Carrion,et al.  Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes? , 2019, Insects.

[25]  R. Feitosa,et al.  Natural history and ecology of fungus-farming ants: a field study in Atlantic rainforest , 2019, Insectes Sociaux.

[26]  L. Lach,et al.  An Epiphytic Ant-Plant Mutualism Structures Arboreal Ant Communities , 2019, Environmental Entomology.

[27]  S. West,et al.  Transmission, relatedness, and the evolution of cooperative symbionts , 2019, Journal of evolutionary biology.

[28]  V. Witte,et al.  Competition as possible driver of dietary specialisation in the mushroom harvesting ant Euprenolepis procera (Hymenoptera: Formicidae) , 2019 .

[29]  C. Leroy,et al.  How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species , 2019, Fungal Ecology.

[30]  Erol Akçay,et al.  The balance of interaction types determines the assembly and stability of ecological communities , 2019, Nature Ecology & Evolution.

[31]  J. Boomsma,et al.  Horizontal partner exchange does not preclude stable mutualism in fungus-growing ants , 2019, Behavioral Ecology.

[32]  G. Rambold,et al.  Microbial community composition of nest-carton and adjoining soil of the ant Lasius fuliginosus and the role of host secretions in structuring microbial communities , 2019, Fungal Ecology.

[33]  H. Voglmayr,et al.  Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) , 2019, Mycological Progress.

[34]  T. Schultz,et al.  Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants , 2018, Proceedings of the National Academy of Sciences.

[35]  R. M. Adams,et al.  The farming ant Sericomyrmex amabilis nutritionally manages its fungal symbiont and its social parasite , 2018 .

[36]  U. Mueller,et al.  Phylogenetic patterns of ant–fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants , 2018, Molecular ecology.

[37]  S. Speller,et al.  Host colony integration: Megalomyrmex guest ant parasites maintain peace with their host using weaponry , 2018, Animal Behaviour.

[38]  A. Dejean,et al.  A dolichoderine ant that constructs traps to ambush prey collectively: convergent evolution with a myrmicine genus. , 2018 .

[39]  F. B. Oberhauser,et al.  Transmission of fungal partners to incipient Cecropia-tree ant colonies , 2018, PloS one.

[40]  C. Penick,et al.  Facultative mushroom feeding by common woodland ants (Formicidae, Aphaenogaster spp.) , 2017 .

[41]  Joseph Heitman,et al.  The Fungal Kingdom , 2017 .

[42]  J. Orivel,et al.  Exploring fungus–plant N transfer in a tripartite ant–plant–fungus mutualism , 2017, Annals of botany.

[43]  A. Dejean,et al.  Hollow Internodes Permit a Neotropical Understory Plant to Shelter Multiple Mutualistic Ant Species, Obtaining Protection and Nutrient Provisioning (Myrmecotrophy) , 2017, The American Naturalist.

[44]  J. Latgé,et al.  The Fungal Cell Wall: Structure, Biosynthesis, and Function , 2017, Microbiology spectrum.

[45]  Seán G. Brady,et al.  Dry habitats were crucibles of domestication in the evolution of agriculture in ants , 2017, Proceedings of the Royal Society B: Biological Sciences.

[46]  Veronika Mayer,et al.  A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (Ascomycota: Chaetothyriales) , 2017, Proceedings of the Royal Society B: Biological Sciences.

[47]  Milan Janda,et al.  The assembly of ant-farmed gardens: mutualism specialization following host broadening , 2017, Proceedings of the Royal Society B: Biological Sciences.

[48]  N. Pierce,et al.  Distinctive fungal communities in an obligate African ant-plant mutualism , 2017, Proceedings of the Royal Society B: Biological Sciences.

[49]  J. Orivel,et al.  Trade-offs in an ant–plant–fungus mutualism , 2017, Proceedings of the Royal Society B: Biological Sciences.

[50]  J. Orivel,et al.  Convergent structure and function of mycelial galleries in two unrelated Neotropical plant-ants , 2017, Insectes Sociaux.

[51]  T. Schultz,et al.  Biology of the relict fungus-farming ant Apterostigma megacephala Lattke, including descriptions of the male, gyne, and larva , 2017, Insectes Sociaux.

[52]  P. Frédéric,et al.  Trade-offs in mutualistic investment ESM from Trade-offs in mutualistic investment in a tripartite symbiosis , 2017 .

[53]  K. Fiedler,et al.  Ant-cultivated Chaetothyriales in hollow stems of myrmecophytic Cecropia sp. trees – diversity and patterns , 2016 .

[54]  A. B. Ivens Cooperation and conflict in ant (Hymenoptera: Formicidae) farming mutualisms: A review , 2015 .

[55]  T. Schultz,et al.  The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae) , 2015 .

[56]  Rosli Hashim,et al.  Collective exploitation of a temporally unpredictable food source: mushroom harvesting by the ant Euprenolepis procera , 2014, Animal Behaviour.

[57]  J. Boomsma,et al.  Chemically armed mercenary ants protect fungus-farming societies , 2013, Proceedings of the National Academy of Sciences.

[58]  D. McKey,et al.  Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant–plant interactions , 2012, Proceedings of the Royal Society B: Biological Sciences.

[59]  U. Maschwitz,et al.  The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. , 2011, Fungal Biology.

[60]  W. M. Wheeler A new Guest-ant and Other new Formicidae From Barro Colorado Island, Panama , 2011 .

[61]  J. Orivel,et al.  Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants , 2011, Biology Letters.

[62]  D. McKey,et al.  Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen , 2011, Proceedings of the Royal Society B: Biological Sciences.

[63]  J. Orivel,et al.  Trophic mediation by a fungus in an ant–plant mutualism , 2010 .

[64]  O. Leimar,et al.  Cooperation for direct fitness benefits , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  F. Santschi Formicides Nouveaux Ou Peu Connus Du Congo Francais. , 2010 .

[66]  H. Voglmayr,et al.  Mycelial carton galleries of Azteca brevis (Formicidae) as a multi-species network , 2009, Proceedings of the Royal Society B: Biological Sciences.

[67]  D. McKey,et al.  Ant-plants and fungi: a new threeway symbiosis. , 2009, The New phytologist.

[68]  U. Maschwitz,et al.  Mushroom harvesting ants in the tropical rain forest , 2008, Naturwissenschaften.

[69]  R. Crozier,et al.  Specificity and transmission mosaic of ant nest-wall fungi , 2008, Proceedings of the National Academy of Sciences.

[70]  C. Moreau,et al.  Predatory abilities favour the success of the invasive ant Pheidole megacephala in an introduced area , 2007 .

[71]  J. Longino A taxonomic review of the genus Azteca (Hymenoptera: Formicidae) in Costa Rica and a global revision of the aurita group , 2007 .

[72]  John N. Thompson,et al.  Mutualistic Webs of Species , 2006, Science.

[73]  C. Moreau,et al.  Phylogeny of the Ants: Diversification in the Age of Angiosperms , 2006, Science.

[74]  U. Maschwitz,et al.  Ant-gardens of tropical Asian rainforests , 2006, Naturwissenschaften.

[75]  U. Mueller,et al.  The Evolution of Agriculture in Insects , 2005 .

[76]  J. Ayroles,et al.  Insect behaviour: Arboreal ants build traps to capture prey , 2005, Nature.

[77]  A. Dejean,et al.  Ant‐fed plants: comparison between three geophytic myrmecophytes , 2004 .

[78]  U. Mueller,et al.  The Origin of the Attine Ant-Fungus Mutualism , 2001, The Quarterly Review of Biology.

[79]  U. Mueller,et al.  Agro-predation: usurpation of attine fungus gardens by Megalomyrmex ants , 2000, Naturwissenschaften.

[80]  U. Mueller,et al.  Garden sharing and garden stealing in fungus-growing ants , 2000, Naturwissenschaften.

[81]  A. Dejean,et al.  Ant Mosaic in Oil Palm Plantations of the Southwest Province of Cameroon: Impact on Leaf Miner Beetle (Coleoptera: Chrysomelidae) , 1997 .

[82]  A. Dejean,et al.  Arboreal nest building and ant-garden initiation by a Ponerine ant , 1996, Naturwissenschaften.

[83]  K. Treseder,et al.  Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte , 1995, Nature.

[84]  E. Wilson,et al.  Journey to the Ants , 1990 .

[85]  B. Bolton The ant tribe Tetramoriini (Hymenoptera: Formicidae). The genus Tetramorium Mayr, in the Ethiopian Zoogeographical Region. , 1980 .

[86]  W. E. Eguagie A Crematogaster sp. (Hym., Formicidae) attacking Cola nitida (Sterculiaceae) in Western Nigeria , 1973 .

[87]  U. Maschwitz,et al.  Der Kartonnestbau bei Lasius fuliginosus Latr. (Hym. Formicidae) , 1970, Zeitschrift für vergleichende Physiologie.

[88]  I. Bailey Some Relations between Ants and Fungi , 1920 .

[89]  A. Fomena,et al.  Nesting System and Foraging Behaviour of Crematogaster (Nematocrema) stadelmanni Mayr, 1895 (Hymenoptera: Formicidae: Myrmicinae) in Douala (Littoral-Cameroon) , 2022, American Journal of Entomology.

[90]  M. Rampino,et al.  The fungal and acritarch events as time markers for the latest Permian mass extinction: An update , 2018 .

[91]  S. R. Hajong,et al.  Determination of structural features of the nest material of Crematogaster rogenhoferi (Mayr, 1879), (Hymenoptera: Myrmicinae) , 2018 .

[92]  T. Schowalter,et al.  Biology and Management of the Texas Leafcutting Ant (Hymenoptera: Formicidae) , 2017 .

[93]  U. Maschwitz,et al.  epiAnt gardens of Camponotus (Myrmotarsus) irritabilis (Hymenoptera: Formicidae: Formicinae) and Hoya elliptica (Apocynaceae) in Southeast Asia , 2017 .

[94]  M. Magdalena,et al.  Discovery of a second mushroom harvesting ant (Hymenoptera: Formicidae) in Malayan tropical rainforests , 2014 .

[95]  C. Huxley THE ANT‐PLANTS MYRMECODIA AND HYDNOPHYTUM (RUBIACEAE), AND THE RELATIONSHIPS BETWEEN THEIR MORPHOLOGY, ANT OCCUPANTS, PHYSIOLOGY AND ECOLOGY , 1978 .

[96]  P. D. Miré Note taxonomique à propos de Sphaerocrema dewasi, agent causal de la "défoliation en mannequin d'osier" du caféier Robusta au Cameroun , 1969 .

[97]  W. V. Leeuwen EINIGE BEOBACHTUNGEN UEBER DAS ZUSAMMENLEBEN VON CAMPONOTUS QUADRICEPS F. SMITH MIT DEM AMEISENBAUM ENDOSPERMUM FORMICARUM BECC. AUS NED-GUINEA , 1928 .

[98]  W. M. Wheeler Ants of the American Museum Congo expedition. A contribution to the myrmecology of Africa. IX. A synonymic list of the ants of the Malagasy region. , 1922 .

[99]  J. Elliott Fungi in the nests of ants , 1914 .

[100]  Georg Fresenius Beiträge zur mykologie. , 1850 .