What can we learn from benefit transfer errors? Evidence from 20 years of research on convergent validity

We develop a nonparametric approach to meta-analysis and use it to identify modeling decisions that affect benefit transfer errors. The meta-data describe the results from 31 empirical studies testing the convergent validity of benefit transfers. They evaluated numerous methodological procedures, collectively reporting 1071 transfer errors. Our meta-regressions identify several important findings, including: (1) the median absolute error is 39%; (2) function transfers outperform value transfers; (3) transfers describing environmental quantity generate lower transfer errors than transfers describing quality changes; (4) geographic site similarity is important for value transfers; (5) contingent valuation generates lower transfer errors than other valuation methods; and (6) combining data from multiple studies tends to reduce transfer errors.

[1]  Tommy Stanley,et al.  Beyond Publication Bias , 2005 .

[2]  James J. Murphy,et al.  A Meta-analysis of Hypothetical Bias in Stated Preference Valuation , 2003 .

[3]  S. Engel Benefit function transfer versus meta-analysis as policy-making tools: a comparison , 2002 .

[4]  Bonnie G. Colby,et al.  Evaluating the Performance of Benefit Transfer: An Empirical Inquiry , 1997 .

[5]  V. Smith,et al.  Do Contingent Valuation Estimates Pass a "Scope" Test? A Meta Analysis , 1996 .

[6]  George Van Houtven,et al.  Benefit Transfer via Preference Calibration: “Prudential Algebra” for Policy , 2002, Land Economics.

[7]  John C. Bergstrom,et al.  Using meta-analysis for benefits transfer: Theory and practice , 2006 .

[8]  Kevin J. Boyle,et al.  Necessary Conditions for Valid Benefit Transfers , 2009 .

[9]  Christopher F. Parmeter,et al.  Growth Empirics Without Parameters , 2012 .

[10]  Ståle Navrud,et al.  Environmental value transfer : issues and methods , 2007 .

[11]  Sudip Chattopadhyay,et al.  A Repeated Sampling Technique in Assessing the Validity of Benefit Transfer in Valuing Non-Market Goods , 2003, Land Economics.

[12]  Klaus Moeltner,et al.  Predicting Resource Policy Outcomes via Meta-Regression: Data Space, Model Space, and the Quest for 'Optimal Scope' , 2008 .

[13]  J. Hart,et al.  Testing the Significance of Categorical Predictor Variables in Nonparametric Regression Models , 2006 .

[14]  Michael Seadle Measurement , 2007, The Measurement of Information Integrity.

[15]  Russell Blamey,et al.  Choice Modeling and Tests of Benefit Transfer , 2002 .

[16]  R. Johnston,et al.  Methods, Trends and Controversies in Contemporary Benefit Transfer , 2009 .

[17]  Jeffrey S. Racine,et al.  Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors , 2007, The Review of Economics and Statistics.

[18]  Simon J. Sheather,et al.  Indirect Cross-Validation for Density Estimation , 2008, 0812.0051.

[19]  V. Kerry Smith,et al.  Do Contingent Valuation Estimates Pass a "Scope" Test? A Meta-analysis , 1996 .

[20]  Emmanuel Flachaire,et al.  Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap , 2005, Comput. Stat. Data Anal..

[21]  Christopher F. Parmeter,et al.  Economies of Scope for Microfinance: Differences Across Output Measures , 2010 .

[22]  Christopher F. Parmeter,et al.  Cross-validated Bandwidths and Significance Testing , 2009 .

[23]  Peter E. Kennedy,et al.  The Use (and Abuse) of Meta-analysis in Environmental and Natural Resource Economics: an Assessment , 2022 .

[24]  John B. Loomis,et al.  Testing Transferability of Recreation Demand Models Across Regions: A Study of Corps of Engineer Reservoirs , 1995 .

[25]  Randall S. Rosenberger,et al.  Measurement, generalization, and publication: Sources of error in benefit transfers and their management , 2006 .

[26]  Randall S. Rosenberger,et al.  Correspondence and Convergence in Benefit Transfer Accuracy: Meta-Analytic Review of the Literature , 2007 .

[27]  John B. Loomis,et al.  Reducing barriers in future benefit transfers: Needed improvements in primary study design and reporting , 2006 .

[28]  Qi Li,et al.  Categorical semiparametric varying‐coefficient models , 2013 .

[29]  Jeffrey S. Racine,et al.  A Consistent Model Specification Test with Mixed Discrete and Continuous Data , 2006 .

[30]  Christopher F. Parmeter,et al.  A Simple Method to Visualize Results in Nonlinear Regression Models , 2012, SSRN Electronic Journal.

[31]  Roy Brouwer,et al.  The Validity of Environmental Benefits Transfer: Further Empirical Testing , 1999 .

[32]  Subhrendu K. Pattanayak,et al.  Is Meta-Analysis a Noah's Ark for Non-Market Valuation? , 2002 .

[33]  Mira G. Baron,et al.  Exploring Benefit Transfer: Disamenities of Waste Transfer Stations , 2007 .

[34]  Charles F. Manski,et al.  Identification for Prediction and Decision , 2008 .

[35]  Robert J. Johnston,et al.  Choice experiments, site similarity and benefits transfer , 2007 .

[36]  Qi Li,et al.  NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTIONS WITH DISCRETE REGRESSORS , 2009, Econometric Theory.

[37]  B. Clinton,et al.  Executive Order 12866: Regulatory Planning and Review , 1993 .

[38]  Richard G. Walsh,et al.  Issues in Nonmarket Valuation and Policy Application: A Retrospective Glance , 1989 .

[39]  Neil C. Schwertman,et al.  A simple more general boxplot method for identifying outliers , 2004, Comput. Stat. Data Anal..

[40]  Kevin J. Boyle,et al.  The Benefit-Transfer Challenges , 2010 .

[41]  Jeffrey Bennett,et al.  Choice Modelling, Non-Use Values and Benefit Transfer , 2000 .

[42]  V. Kerry Smith,et al.  Signals or Noise? Explaining the Variation in Recreation Benefit Estimates , 1990 .

[43]  H. Spencer Banzhaf,et al.  Meta-analysis in model implementation: choice sets and the valuation of air quality improvements , 2007 .

[44]  Klaus Moeltner,et al.  Meta-Regression and Benefit Transfer: Data Space, Model Space, and the Quest for ‘Optimal Scope’ , 2007 .