Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures

In this study, we analyze three portfolio selection strategies for loss-averse investors: semi-variance, conditional value-at-risk, and a combination of both risk measures. Moreover, we propose a novel version of the non-dominated sorting genetic algorithm II and of the strength Pareto evolutionary algorithm 2 to tackle this optimization problem. The effectiveness of these algorithms is compared with two alternatives from the literature from five publicly available datasets. The computational results indicate that the proposed algorithms in this study outperform the others for all the examined performance metrics. Moreover, they are able to approximate the Pareto front even in cases in which all the other approaches fail.

[1]  Tien Foo,et al.  Asset Allocation in a Downside Risk Framework , 2000 .

[2]  Yi Peng,et al.  BEHAVIOR MONITORING METHODS FOR TRADE-BASED MONEY LAUNDERING INTEGRATING MACRO AND MICRO PRUDENTIAL REGULATION: A CASE FROM CHINA , 2019, Technological and Economic Development of Economy.

[3]  K. Metaxiotis,et al.  The Constrained Mean-Semivariance Portfolio Optimization Problem with the Support of a Novel Multiobjective Evolutionary Algorithm , 2013 .

[4]  Gang Kou,et al.  Analytic network process in risk assessment and decision analysis , 2014, Comput. Oper. Res..

[5]  Can Berk Kalayci,et al.  A survey of swarm intelligence for portfolio optimization: Algorithms and applications , 2018, Swarm Evol. Comput..

[6]  Tunchan Cura,et al.  Particle swarm optimization approach to portfolio optimization , 2009 .

[7]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[8]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[9]  Chia-Mei Chen,et al.  Optimising mobile base station placement using an enhanced Multi-Objective Genetic Algorithm , 2010, Int. J. Bus. Intell. Data Min..

[10]  Eva Alfaro-Cid,et al.  A naïve approach to speed up portfolio optimization problem using a multiobjective genetic algorithm , 2012 .

[11]  Piero P. Bonissone,et al.  Multiobjective financial portfolio design: a hybrid evolutionary approach , 2005, 2005 IEEE Congress on Evolutionary Computation.

[12]  Sang-Chin Yang,et al.  Portfolio optimization problems in different risk measures using genetic algorithm , 2009, Expert Syst. Appl..

[13]  Manoj Thakur,et al.  Multi-objective heuristic algorithms for practical portfolio optimization and rebalancing with transaction cost , 2017, Appl. Soft Comput..

[14]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[15]  Yi Peng,et al.  Soft consensus cost models for group decision making and economic interpretations , 2019, Eur. J. Oper. Res..

[16]  P. Fishburn Mean-Risk Analysis with Risk Associated with Below-Target Returns , 1977 .

[17]  David Pla-Santamaria,et al.  Grading the performance of market indicators with utility benchmarks selected from Footsie: a 2000 case study , 2005 .

[18]  Javier Estrada,et al.  Mean-Semivariance Optimization: A Heuristic Approach , 2007 .

[19]  Sergey Sarykalin,et al.  Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization , 2008 .

[20]  Konstantinos Liagkouras,et al.  Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics , 2015, Int. J. Inf. Technol. Decis. Mak..

[21]  Pedro Godinho,et al.  Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules , 2017, Expert Syst. Appl..

[22]  Jie Zhang,et al.  Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization , 2014, IEEE Transactions on Cybernetics.

[23]  Manoj Thakur,et al.  Multi-criteria algorithms for portfolio optimization under practical constraints , 2017, Swarm Evol. Comput..

[24]  Yasuhiro Yamai,et al.  Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization , 2002 .

[25]  Antonin Ponsich,et al.  A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications , 2013, IEEE Transactions on Evolutionary Computation.

[26]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[27]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[28]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Sandra Paterlini,et al.  Multiobjective optimization using differential evolution for real-world portfolio optimization , 2011, Comput. Manag. Sci..

[30]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[31]  Ganapati Panda,et al.  A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection , 2014, Swarm Evol. Comput..

[32]  Yves Crama,et al.  Simulated annealing for complex portfolio selection problems , 2003, Eur. J. Oper. Res..

[33]  R. Hinterding,et al.  Gaussian mutation and self-adaption for numeric genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[34]  Konstantinos Liagkouras,et al.  Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..

[35]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[36]  J. Guerard Handbook of portfolio construction : contemporary applications of Markowitz techniques , 2010 .

[37]  H. Konno,et al.  Portfolio Optimization under Lower Partial Risk Measures , 2002 .

[38]  G. Hommel,et al.  Improvements of General Multiple Test Procedures for Redundant Systems of Hypotheses , 1988 .

[39]  Andrea G. B. Tettamanzi,et al.  A genetic approach to portfolio selection , 1993 .

[40]  William W. Hogan,et al.  Computation of the Efficient Boundary in the E-S Portfolio Selection Model , 1972, Journal of Financial and Quantitative Analysis.

[41]  Manfred Gilli,et al.  A Data-Driven Optimization Heuristic for Downside Risk Minimization , 2006 .

[42]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[43]  Konstantinos P. Anagnostopoulos,et al.  The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms , 2011, Expert Syst. Appl..

[44]  Helmut Mausser,et al.  ALGORITHMS FOR OPTIMIZATION OF VALUE­ AT-RISK* , 2002 .

[45]  Kaoutar Senhaji,et al.  Portfolio selection problem: New multicriteria approach for the mean-semivariance model , 2016, 2016 3rd International Conference on Logistics Operations Management (GOL).

[46]  P. Krokhmal,et al.  Portfolio optimization with conditional value-at-risk objective and constraints , 2001 .

[47]  Yan Chen,et al.  A hybrid stock trading system using genetic network programming and mean conditional value-at-risk , 2015, Eur. J. Oper. Res..

[48]  Michael T. M. Emmerich,et al.  A tutorial on multiobjective optimization: fundamentals and evolutionary methods , 2018, Natural Computing.

[49]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[50]  Yi Peng,et al.  Nonlinear manifold learning for early warnings in financial markets , 2017, Eur. J. Oper. Res..

[51]  Can Berk Kalayci,et al.  A comprehensive review of deterministic models and applications for mean-variance portfolio optimization , 2019, Expert Syst. Appl..

[52]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[53]  Quande Qin,et al.  A Novel Hybrid Algorithm for Mean-CVaR Portfolio Selection with Real-World Constraints , 2014, ICSI.

[54]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .

[55]  David N. Nawrocki Optimal algorithms and lower partial moment: ex post results , 1991 .

[56]  Peter Bauer,et al.  Multiple Hypothesenprüfung / Multiple Hypotheses Testing , 1988, Medizinische Informatik und Statistik.

[57]  Peter Winker,et al.  New concepts and algorithms for portfolio choice , 1992 .

[58]  Konstantinos P. Anagnostopoulos,et al.  Multiobjective evolutionary algorithms for complex portfolio optimization problems , 2011, Comput. Manag. Sci..

[59]  Francesco Cesarone,et al.  Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models , 2016, Data in brief.

[60]  Borja Calvo,et al.  scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems , 2016, R J..

[61]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[62]  Manfred Gilli,et al.  A Data-Driven Optimization Heuristic for Downside Risk Minimization , 2006 .

[63]  Ralph E. Steuer,et al.  Multiple Objectives in Portfolio Selection , 2005 .

[64]  R. Jankowitsch,et al.  Currency Dependence of Corporate Credit Spreads , 2003 .

[65]  G. Pflug,et al.  Value-at-Risk in Portfolio Optimization: Properties and Computational Approach ⁄ , 2005 .

[66]  Shahaboddin Shamshirband,et al.  2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization , 2017, Algorithms.

[67]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[68]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[69]  David N. Nawrocki A Brief History of Downside Risk Measures , 1999 .

[70]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[71]  A. Meucci Risk and asset allocation , 2005 .

[72]  Søren S. Nielsen,et al.  Mean‐Variance Portfolio Optimization , 2012 .

[73]  Ronald Hochreiter,et al.  An Evolutionary Computation Approach to Scenario-Based Risk-Return Portfolio Optimization for General Risk Measures , 2009, EvoWorkshops.

[74]  Yi Peng,et al.  MACHINE LEARNING METHODS FOR SYSTEMIC RISK ANALYSIS IN FINANCIAL SECTORS , 2019, Technological and Economic Development of Economy.

[75]  Denisa Cumova,et al.  A symmetric LPM model for heuristic mean–semivariance analysis , 2011 .

[76]  Harry M. Markowitz,et al.  Computation of mean-semivariance efficient sets by the Critical Line Algorithm , 1993, Ann. Oper. Res..

[77]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[78]  Gang Kou,et al.  A kernel entropy manifold learning approach for financial data analysis , 2014, Decis. Support Syst..

[79]  C. Lucas,et al.  Heuristic algorithms for the cardinality constrained efficient frontier , 2011, Eur. J. Oper. Res..

[80]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[81]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[82]  Qingfu Zhang,et al.  Combining Model-based and Genetics-based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[83]  Hanif D. Sherali,et al.  Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization , 2010, Comput. Optim. Appl..