Mode confinement enhanced by exploiting epsilon-near-zero supercoupling in a mimic transverse electric hybrid phonon polariton waveguide

Abstract. New capabilities in mid- to long-wave infrared sensing and telecommunications require ultracompact waveguides that support long propagation lengths. Hybrid waveguides supporting the coupling between a dielectric strip-waveguide mode (long propagation) and a surface polariton mode (tightly confined mode) are promising candidates. Here, an infrared (λ0  =  10.6  μm) hybrid waveguide design is presented that achieves enhanced mode confinement but with minimal impact on propagation distances. Modal area confinement is enhanced by the integration of a thin layer of epsilon-near-zero material, aluminum nitride near the longitudinal optical phonon resonance, which supports supercoupling, a term that describes the effect of field enhancement caused by squeezing energy into arbitrary-sized regions. While SPhPs are inherently transverse magnetic modes, a transverse electric (TE) mode is sought to best exploit the ENZ supercoupling phenomenon. By adding a thin high index layer (GaAs) over the 4H-SiC substrate, a mimic TE mode is achieved. The epsilon-near-zero supercoupling-enhanced mimic TE hybrid SPhP waveguide presented exhibits modal confinement improvement by as much as a factor of 4 while maintaining more than 95% of the original propagation length.

[1]  Nader Engheta,et al.  Supercoupling of surface waves withε-near-zero metastructures , 2014 .

[2]  P. Nordlander,et al.  Mechanisms of Fano resonances in coupled plasmonic systems. , 2013, ACS nano.

[3]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[4]  R. Ruppin,et al.  Electromagnetic energy density in a dispersive and absorptive material , 2002 .

[5]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[6]  Andrea Alù,et al.  Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. , 2008, Physical review letters.

[7]  S. Maier,et al.  Spectral Tuning of Localized Surface Phonon Polariton Resonators for Low-Loss Mid-IR Applications , 2014 .

[8]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[9]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[10]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[11]  Randolph Kirchain,et al.  A roadmap for nanophotonics , 2007 .

[12]  M. Sinclair,et al.  Strong coupling between nanoscale metamaterials and phonons. , 2011, Nano letters.

[13]  Nader Engheta,et al.  Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials , 2007 .

[14]  Daniel Wasserman,et al.  Review of mid-infrared plasmonic materials , 2015 .

[15]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[16]  S. Maier,et al.  Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. , 2013, Nano letters.

[17]  Nader Engheta,et al.  Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media , 2007 .

[18]  Lukas Novotny,et al.  Strong coupling, energy splitting, and level crossings: A classical perspective , 2010 .

[19]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[20]  H. Atwater,et al.  Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. , 2014, Nano letters.

[21]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[22]  Wei-Ping Huang,et al.  Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. , 2012, Optics express.

[23]  Rodney Loudon,et al.  CORRIGENDUM: The propagation of electromagnetic energy through an absorbing dielectric , 1970 .

[24]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[25]  B. Lail,et al.  A Subwavelength Perfect Absorbing Metamaterial Patch Array Coupled with a Molecular Resonance , 2016 .

[26]  Hongsheng Chen,et al.  Hybrid Airy plasmons with dynamically steerable trajectories. , 2016, Nanoscale.

[27]  Claudio A. B. Saunders Filho,et al.  A 4H-SiC phonon polariton enhanced hybrid waveguide , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[28]  G. Guo,et al.  Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. , 2013, Optics express.

[29]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[30]  N. Engheta,et al.  µ-near-zero supercoupling , 2015 .

[31]  Lin Chen,et al.  A Graphene-Based Hybrid Plasmonic Waveguide With Ultra-Deep Subwavelength Confinement , 2014, Journal of Lightwave Technology.

[32]  Andrea Alù,et al.  Overview of Theory and Applications of Epsilon-Near-Zero Materials , 2008 .

[33]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[34]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[35]  Shyamsunder Erramilli,et al.  Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. , 2013, Nano letters.

[36]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[37]  Alexander V. Kildishev,et al.  Role of epsilon-near-zero substrates in the optical response of plasmonic antennas , 2016 .

[38]  R. Adato,et al.  Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. , 2012, ACS nano.

[39]  Wenshan Cai Metal-Coated Waveguide Stretches Wavelengths to Infinity , 2013 .

[40]  Mengtao Sun,et al.  Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits , 2015, Light: Science & Applications.

[41]  W. Chen,et al.  Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons. , 2014, Optics express.

[42]  J. Khurgin,et al.  Low-loss suspended quantum well waveguides. , 2008, Optics express.

[43]  Xiang Zhang,et al.  Toward integrated plasmonic circuits , 2012 .