On convolutions on configuration spaces. II. spaces of locally finite configurations
暂无分享,去创建一个
[1] Dmitri Finkelshtein,et al. Semigroup approach to birth-and-death stochastic dynamics in continuum , 2011, 1109.5094.
[2] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. I , 1975 .
[3] N. N. Bogolyubov,et al. Problems of a Dynamical Theory in Statistical Physics , 1959 .
[4] John Frank Charles Kingman,et al. Infinitely Divisible Point Processes , 1979 .
[5] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .
[6] E. CastroPeter,et al. Infinitely Divisible Point Processes , 1982 .
[7] C. Shen. On a certain class of transformations in statistical mechanics , 1973 .
[8] Absolute continuity of Poisson random fields , 1990 .
[9] A. Masi,et al. Mathematical Methods for Hydrodynamic Limits , 1991 .
[10] C. Landim,et al. Scaling Limits of Interacting Particle Systems , 1998 .
[11] Hans Zessin,et al. Integral and Differential Characterizations of the GIBBS Process , 1979 .
[12] A. Lenard,et al. Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .
[13] Tobias Kuna,et al. HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .
[14] Yu. M. Sukhov,et al. Dynamical Systems of Statistical Mechanics , 1989 .
[15] D. S. Carter,et al. Representations of States of Infinite Systems in Statistical Mechanics , 1971 .
[16] C. Shen. A Functional Calculus Approach to the Ursell‐Mayer Functions , 1972 .
[17] T M Li Ge Te. Interacting Particle Systems , 2013 .
[18] J. Gibbs. Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics , 1902 .
[19] Sergio Albeverio,et al. Analysis and Geometry on Configuration Spaces: The Gibbsian Case☆ , 1998 .
[20] K. R. Parthasarathy,et al. PROBABILITY MEASURES IN A METRIC GROUP , 1967 .
[21] J. M. Ollagnier. Dynamical systems in statistical mechanics , 1985 .
[22] Tobias Kuna,et al. Holomorphic Bogoliubov functionals for interacting particle systems in continuum , 2006 .
[23] Sergio Albeverio,et al. Analysis and Geometry on Configuration Spaces , 1998 .
[24] Yuri Kondratiev,et al. CORRELATION FUNCTIONS AND INVARIANT MEASURES IN CONTINUOUS CONTACT MODEL , 2008 .
[25] M. Röckner. Stochastic analysis on configuration spaces: basic ideas and recent results , 1998 .
[26] J. Gibbs. Elementary Principles in Statistical Mechanics , 1902 .
[27] A. Skorokhod,et al. On the Differentiability of Measures Which Correspond to Stochastic Processes. I. Processes with Independent Increments , 1957 .
[28] Anatoli V. Skorokhod,et al. ON CONTACT PROCESSES IN CONTINUUM , 2006 .
[29] Raphael Aronson,et al. Theory and application of the Boltzmann equation , 1976 .
[30] D. Finkelshtein,et al. Measures on two-component configuration spaces , 2007, 0712.1401.
[31] David Ruelle,et al. Cluster Property of the Correlation Functions of Classical Gases , 1964 .
[32] Errico Presutti,et al. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics , 2008 .
[33] J. Mecke,et al. Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse , 1968 .
[34] T. Liggett. Interacting Particle Systems , 1985 .
[35] Marked Gibbs measures via cluster expansion , 1999, math-ph/9908006.
[36] I. Gel'fand,et al. REPRESENTATIONS OF THE GROUP OF DIFFEOMORPHISMS , 1975 .
[37] T. Liggett,et al. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .
[38] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .