On convolutions on configuration spaces. II. spaces of locally finite configurations

We consider the convolution of probability measures on spaces of locally finite configurations (subsets of a phase space) and their connection with the convolution of the corresponding correlation measures and functionals. In particular, the convolution of Gibbs measures is studied. We also describe a relationship between invariant measures with respect to some operator and properties of the corresponding image of this operator on correlation functions.

[1]  Dmitri Finkelshtein,et al.  Semigroup approach to birth-and-death stochastic dynamics in continuum , 2011, 1109.5094.

[2]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[3]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .

[4]  John Frank Charles Kingman,et al.  Infinitely Divisible Point Processes , 1979 .

[5]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[6]  E. CastroPeter,et al.  Infinitely Divisible Point Processes , 1982 .

[7]  C. Shen On a certain class of transformations in statistical mechanics , 1973 .

[8]  Absolute continuity of Poisson random fields , 1990 .

[9]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[10]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[11]  Hans Zessin,et al.  Integral and Differential Characterizations of the GIBBS Process , 1979 .

[12]  A. Lenard,et al.  Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .

[13]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[14]  Yu. M. Sukhov,et al.  Dynamical Systems of Statistical Mechanics , 1989 .

[15]  D. S. Carter,et al.  Representations of States of Infinite Systems in Statistical Mechanics , 1971 .

[16]  C. Shen A Functional Calculus Approach to the Ursell‐Mayer Functions , 1972 .

[17]  T M Li Ge Te Interacting Particle Systems , 2013 .

[18]  J. Gibbs Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics , 1902 .

[19]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces: The Gibbsian Case☆ , 1998 .

[20]  K. R. Parthasarathy,et al.  PROBABILITY MEASURES IN A METRIC GROUP , 1967 .

[21]  J. M. Ollagnier Dynamical systems in statistical mechanics , 1985 .

[22]  Tobias Kuna,et al.  Holomorphic Bogoliubov functionals for interacting particle systems in continuum , 2006 .

[23]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces , 1998 .

[24]  Yuri Kondratiev,et al.  CORRELATION FUNCTIONS AND INVARIANT MEASURES IN CONTINUOUS CONTACT MODEL , 2008 .

[25]  M. Röckner Stochastic analysis on configuration spaces: basic ideas and recent results , 1998 .

[26]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[27]  A. Skorokhod,et al.  On the Differentiability of Measures Which Correspond to Stochastic Processes. I. Processes with Independent Increments , 1957 .

[28]  Anatoli V. Skorokhod,et al.  ON CONTACT PROCESSES IN CONTINUUM , 2006 .

[29]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[30]  D. Finkelshtein,et al.  Measures on two-component configuration spaces , 2007, 0712.1401.

[31]  David Ruelle,et al.  Cluster Property of the Correlation Functions of Classical Gases , 1964 .

[32]  Errico Presutti,et al.  Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics , 2008 .

[33]  J. Mecke,et al.  Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse , 1968 .

[34]  T. Liggett Interacting Particle Systems , 1985 .

[35]  Marked Gibbs measures via cluster expansion , 1999, math-ph/9908006.

[36]  I. Gel'fand,et al.  REPRESENTATIONS OF THE GROUP OF DIFFEOMORPHISMS , 1975 .

[37]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[38]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .