Storage of a temporal pattern sequence in a network

Learning of single patterns and a temporal pattern sequence in a network when the coupling coefficients between the network elements change their values according to a definite coupling function is described. In contrast to technical systems (e.g. film, tape) where temporal sequences are often encoded in the storage location, the network stores information only by changing the values of the coupling coefficients. A network of 100 elements was simulated on an UNIVAC 1100/80 computer. Eight single patterns and a sequence of these patterns were offered at the input of the network. After the learning process the network reproduces every stored pattern as an output signal when only parts of it are fed in. The activity, that is the sum of all output signals, is regulated by an external control signal. By setting that control signal to a suitable value the network is able to reproduce the stored pattern sequence starting from any arbitrary pattern. Lowering the external control signal during that process causes the network to hold the last presented pattern until the external control signal is changed again. It is speculated that the coupling function implemented in the simulation may be anaogous to a characteristic describing the chemical process of cooperative binding.

[1]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[2]  O. Creutzfeldt,et al.  [INTRACELLULAR STIMULATION OF CORTICAL NERVE CELLS]. , 1964, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[3]  John C. Eccles,et al.  Cerebral Synaptic Mechanisms , 1965 .

[4]  J. S. GRIFFITH,et al.  A Theory of the Nature of Memory , 1966, Nature.

[5]  Gardner-Medwin Ar,et al.  Modifiable synapses necessary for learning. , 1969 .

[6]  A. R. Gardner-Medwin,et al.  Modifiable Synapses necessary for Learning , 1969, Nature.

[7]  V. Braitenberg,et al.  Thoughts on the cerebral cortex. , 1974, Journal of theoretical biology.

[8]  J. Changeux,et al.  Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks , 1976, Nature.

[9]  W. Singer,et al.  Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity , 1979, Nature.

[10]  A. M. Uttley,et al.  Information transmission in the nervous system , 1979 .

[11]  G. Jagow,et al.  Theorie und Methoden der Enzymkinetik. Von H. Bisswanger. Verlag Chemie, Weinheim 1979. XII, 239 S., geh. DM 48.00 , 1980 .

[12]  W. Trommer,et al.  Enzymkinetik: Theorie und Methoden der Enzymkinetik. Eine Einführung für Biochemiker, Biologen und Mediziner. Von Hans Bisswanger, Verlag Chemie, Weinheim ‐ Deerfield Beach ‐Basel 1979. XU, 239 S., 102 Abb., 18 Tab., brosch., DM 48,‐ , 1980 .

[13]  Wolf Singer,et al.  EFFECTS OF MONOCULAR STROBOSCOPIC EXPERIENCE ON THE KITTEN'S VISUAL CORTEX , 1981 .

[14]  G. Willwacher Fähigkeiten eines assoziativen Speichersystems im Vergleich zu Gehirnfunktionen , 1976, Biological Cybernetics.

[15]  Kunihiko Fukushima,et al.  A model of associative memory in the brain , 1973, Kybernetik.

[16]  J. C. Stanley,et al.  Simulation studies of a temporal sequence memory model , 1976, Biological Cybernetics.

[17]  O. D. Creutzfeldt,et al.  Intracelluläre Reizung corticaler Nervenzellen , 1964, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[18]  Yuzo Hirai,et al.  A new hypothesis for synaptic modification: An interactive process between postsynaptic competition and presynaptic regulation , 2004, Biological Cybernetics.