Eliminating CO2 Emissions from Coal-Fired Power Plants

Publisher Summary This chapter reviews carbon capture and storage (CCS), lays out a number of novel concepts for coal-fired power plants that do not release carbon dioxide into the atmosphere, and discusses these concepts in the context of retrofits of existing power plants, in the development of advanced power plant designs, and in conjunction with adequate carbon dioxide storage options. Stabilizing the atmospheric concentration of carbon dioxide is possible only if carbon dioxide emissions from all sources are stopped. Fossil fuels can still provide energy, but the carbon dioxide resulting from the combustion must be captured and stored safely and permanently. CCS could provide a solution to the climate-change problem, but the introduction of this novel technology is a major undertaking. From a technology development point of view, one must distinguish between retrofitting existing power plants and designing new power plants with CO2 capture fully integrated.

[1]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[2]  Edward S. Rubin,et al.  Cost and performance of fossil fuel power plants with CO2 capture and storage , 2007 .

[3]  Klaus S. Lackner,et al.  Carbon Dioxide Capture and Disposal: Carbon Sequestration , 2005 .

[4]  Liang-Shih Fan,et al.  CO2 Mineral Sequestration: Chemically Enhanced Aqueous Carbonation of Serpentine , 2008 .

[5]  Wallace S. Broecker,et al.  Neutralization of Fossil Fuel CO2 by Marine Calcium Carbonate , 1977 .

[6]  Douglas P. Harrison,et al.  Hydrogen Production Using Sorption-Enhanced Reaction , 2001 .

[7]  Klaus S. Lackner,et al.  CARBONATE CHEMISTRY FOR SEQUESTERING FOSSIL CARBON , 2003 .

[8]  Sam Holloway,et al.  STORAGE OF FOSSIL FUEL-DERIVED CARBON DIOXIDE BENEATH THE SURFACE OF THE EARTH , 2001 .

[9]  Martin J. Blunt,et al.  Carbon dioxide in enhanced oil recovery , 1993 .

[10]  David W. Keith,et al.  Climate Strategy with Co2 Capture from the Air , 2001 .

[11]  E. D. Sloan,et al.  Fundamental principles and applications of natural gas hydrates , 2003, Nature.

[12]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[13]  Jeffrey Raymond Hufton,et al.  Sorption‐enhanced reaction process for hydrogen production , 1999 .

[14]  Liang-Shih Fan,et al.  Coal cleans up its act , 2006 .

[15]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[16]  David W Keith,et al.  Carbon neutral hydrocarbons , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  A. L. Ortíz,et al.  Hydrogen from methane in a single-step process , 1999 .

[18]  Yoshizo Suzuki,et al.  Developing an innovative method, HyPr-RING, to produce hydrogen from hydrocarbons , 2002 .

[19]  Taro Takahashi,et al.  Experimental evaluation of in situ CO2‐water‐rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration , 2007 .

[20]  Anders Lyngfelt,et al.  Multicycle reduction and oxidation of different types of iron oxide particles: Application to chemical-looping combustion , 2004 .

[21]  E. M. Winter,et al.  Disposal of carbon dioxide in aquifers in the U.S. , 1995 .

[22]  Youqing Shen,et al.  Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. , 2006, Chemistry.

[23]  A L Robinson,et al.  Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States. , 2003, Environmental science & technology.

[24]  Kurt Zenz House,et al.  Permanent carbon dioxide storage in deep-sea sediments , 2006, Proceedings of the National Academy of Sciences.

[25]  H. Herzog,et al.  An Issue of Permanence: Assessing the Effectiveness of Temporary Carbon Storage , 2002 .

[26]  Scott Elliott,et al.  EXTRACTION OF CARBON DIOXIDE FROM THE ATMOSPHERE THROUGH ENGINEERED CHEMICAL SINKAGE , 2001 .

[27]  A. Lyngfelt,et al.  A fluidized-bed combustion process with inherent CO2 separation; Application of chemical-looping combustion , 2001 .

[28]  David W. Keith,et al.  Fossil Fuels Without CO2 Emissions , 1998, Science.

[29]  P. Freund,et al.  Progress toward storage of carbon dioxide , 1997 .

[30]  Hiroyuki Hatano,et al.  Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING) , 2005 .

[31]  Joan F. Brennecke,et al.  Feasibility of using ionic liquids for carbon dioxide capture , 2004 .

[32]  James J. Dooley,et al.  Potential for carbon dioxide sequestration in flood basalts , 2006 .

[33]  Vladimir M. Zamansky,et al.  FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2 , 2002 .

[34]  Gary J. Stiegel,et al.  Hydrogen from coal gasification: An economical pathway to a sustainable energy future , 2006 .

[35]  M. Johansson,et al.  The use of NiO as an Oxygen Carrier in Chemical-Looping Combustion , 2006 .

[36]  M. Mann,et al.  A life cycle assessment of biomass cofiring in a coal-fired power plant , 2001 .

[37]  Sigurdur R. Gislason,et al.  Mineral Carbonation of CO2 , 2008 .

[38]  Himanshu Gupta,et al.  Multicyclic Study on the Simultaneous Carbonation and Sulfation of High-Reactivity CaO , 2004 .

[39]  C. Auray-Blais,et al.  Biobanking Primer: Down to Basics , 2007, Science.

[40]  C. Marchetti On geoengineering and the CO2 problem , 1977 .

[41]  John Gale,et al.  Geological storage of CO2: What do we know, where are the gaps and what more needs to be done? , 2004 .

[42]  Wallace S. Broecker,et al.  Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide , 1979 .

[43]  David Archer,et al.  Multiple timescales for neutralization of fossil fuel CO2 , 1997 .

[44]  Junichi Ida,et al.  Dual-Phase Metal−Carbonate Membrane for High-Temperature Carbon Dioxide Separation , 2005 .

[45]  K. S. Jayaraman,et al.  India's carbon dioxide trap , 2007, Nature.

[46]  Marco Mazzotti,et al.  Dissolution kinetics of fosteritic olivine at 90–150 °C including effects of the presence of CO2 , 2006 .

[47]  Klaus S. Lackner,et al.  Carbon dioxide disposal in carbonate minerals , 1995 .

[48]  Hongguang Jin,et al.  A new type of coal gas fueled chemical-looping combustion , 2004 .

[49]  H. Rogner AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES , 1997 .

[50]  D. Bienstock,et al.  Production of synthesis gas and hydrogen by the steam--iron process. Pilot-plant study of fluidized and free-falling beds , 1961 .

[51]  A. Lyngfelt,et al.  Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion , 2004 .

[52]  Masaru Ishida,et al.  Application of Fe2O3−Al2O3 Composite Particles as Solid Looping Material of the Chemical-Loop Combustor , 2005 .

[53]  Klaus S. Lackner,et al.  Transport model for a high temperature, mixed conducting CO2 separation membrane , 2007 .

[54]  Peter B. Kelemen,et al.  In situ carbonation of peridotite for CO2 storage , 2008, Proceedings of the National Academy of Sciences.

[55]  Klaus S. Lackner,et al.  A Review of Emerging Technologies for Sustainable use of Coal for Power Generation , 2000 .

[56]  Liang-Shih Fan,et al.  CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process , 2004 .

[57]  Luis F. de Diego,et al.  Performance in a Fixed-Bed Reactor of Titania-Supported Nickel Oxide as Oxygen Carriers for the Chemical-Looping Combustion of Methane in Multicycle Tests , 2006 .

[58]  Klaus S. Lackner,et al.  Carbon Dioxide Sequestering Using Ultramafic Rocks , 1998 .

[59]  Kellyn S. Betts Technology Solutions: Demonstrating carbon sequestration , 2003 .