Electron Cyclotron Power Source System For ITER

Abstract Electron cyclotron (EC) heating and current drive is a well-established auxiliary heating mechanism for tokamak plasmas, which is also effective in assisting plasma breakdown and controlling disruptive plasma instabilities. ITER requires 20 MW of power at 170-GHz frequency to be coupled into the plasma for EC radio-frequency (rf) applications. Gyrotrons are rf/microwave oscillators capable of delivering high continuous-wave power in the microwave and millimeter-wave frequency range (a few to hundreds of gigahertz). An EC system with 26 gyrotron sources at 170 GHz, with a typical unit power of 1 MW each, and a total installed power capacity of 24 MW is planned for ITER. As a part of the in-kind contributions, the Indian domestic agency is responsible for two sets of EC sources that provide 2 MW (∼8%) of the EC power at 170-GHz frequency. Here, we provide an overview of the gyrotron source system, its basic concepts and main features, design aspects, auxiliary requirements, performance issues, and future research and development goals.

[1]  Richard J. Temkin,et al.  Phase retrieval of gyrotron beams based on irradiance moments , 2002 .

[2]  Manfred Thumm,et al.  On the use of step-tuneable gyrotrons in ITER , 2005 .

[3]  H. O. Prinz,et al.  Frequency measurement system for gyrotron diagnostics , 2007, IEEE Potentials.

[4]  N. Kobayashi,et al.  Progress of high power 170 GHz gyrotron in JAEA , 2009 .

[5]  Stefan Illy,et al.  Transverse field collector sweep system for high power CW gyrotrons , 2007 .

[6]  Hayashi,et al.  Major Improvement of Gyrotron Efficiency with Beam Energy Recovery. , 1994, Physical review letters.

[7]  A. G. Litvak,et al.  Development in Russia of Megawatt Power Gyrotrons for Fusion , 2011 .

[8]  P. L. Mondino,et al.  High frequency/high voltage solid state body power supplies for CPD gyrotrons , 2003 .

[9]  Ferran Albajar,et al.  5MW CW supply system for the ITER gyrotrons Test Facility , 2011 .

[10]  M. Shapiro,et al.  Experimental study of a 1.5 MW, 110 GHz gyrotron with a single-stage depressed collector , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[11]  C. J. Edgcombe,et al.  Gyrotron oscillators : their principles and practice , 1993 .

[12]  Manfred Thumm,et al.  Progress on Gyrotrons for ITER and Future Thermonuclear Fusion Reactors , 2010, IEEE Transactions on Plasma Science.

[13]  A prototype of a superconducting magnet for a 170-GHz gyrotron , 2008 .

[14]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[15]  J. Lohr,et al.  Thermal stress analysis of 1 MW gyrotron collector , 2007 .

[16]  D. Wagner,et al.  On the resonant scattering at guide dielectric windows , 1996 .

[17]  Yujuan Gao,et al.  High current density M-type cathodes for vacuum electron devices , 2005 .

[18]  Tomasz Rzesnicki,et al.  Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes , 2006 .

[19]  Yoshika Mitsunaka,et al.  Development of 170 and 110 GHz gyrotrons for fusion devices , 2003 .

[20]  Yosuke Hirata,et al.  Development of 170 GHz/500 kW gyrotron , 1997 .

[21]  J. Doane Design of Circular Corrugated Waveguides to Transmit Millimeter Waves at ITER , 2008 .

[22]  Koji Takahashi,et al.  Reliability Test of the 170GHz Gyrotron for ITER , 2011 .

[23]  W. Lawson,et al.  Magnetron injection gun (MIG) design for gyrotron applications , 1986 .

[24]  Timothy Goodman,et al.  Overview of the ITER EC H&CD system and its capabilities , 2011 .

[25]  A. T. Drobot,et al.  The Linear and Self-Consistent Nonlinear Theory of the Electron Cyclotron Maser Instability , 1977 .

[26]  James P. Anderson,et al.  Experimental study of a 1.5-MW, 110-GHz gyrotron oscillator , 2005 .

[27]  Giovanni Ramponi,et al.  Overview of the ITER EC upper launcher , 2008 .

[28]  F. Leuterer,et al.  Frequency measurements of the gyrotrons used for collective Thomson scattering diagnostics at TEXTOR and ASDEX upgrade , 2006 .

[29]  Manfred Thumm,et al.  Gyrotrons: High-Power Microwave and Millimeter Wave Technology , 2003 .

[30]  G. Dammertz,et al.  A diode electron gun for a 1MW 140GHz gyrotron , 1997 .

[31]  V. V. Parshin,et al.  Dielectric materials for gyrotron output windows , 1994 .

[32]  G. Michel A fast and versatile interlock system , 2005 .

[33]  Manfred Thumm,et al.  Frequency step-tunable (114–170 GHz) megawatt gyrotrons for plasma physics applications , 2001 .

[34]  M. Thumm,et al.  Innovation on high-power long-pulse gyrotrons , 2011 .

[35]  Anders Wallander,et al.  Present status and future road map for ITER CODAC networks and infrastructure , 2010 .

[36]  J. R. Brandon,et al.  CHEMICAL VAPOR DEPOSITION DIAMOND WINDOW FOR HIGH-POWER AND LONG PULSE MILLIMETER WAVE TRANSMISSION , 1998 .

[37]  S. Alberti,et al.  Infrared Measurements of the RF Output of 170-GHz/2-MW Coaxial Cavity Gyrotron and Its Phase Retrieval Analysis , 2009, IEEE Transactions on Plasma Science.

[38]  David Allan Humphreys,et al.  Chapter 8: Plasma operation and control , 2007 .

[39]  H. Idei,et al.  Coupling of tilting Gaussian beam with hybrid mode in the corrugated waveguide , 1997 .

[40]  M. A. Shapiro,et al.  The EC H&CD Transmission Line for ITER , 2011 .

[41]  T. Antonsen,et al.  Startup scenarios in high-power gyrotrons , 2004, IEEE Transactions on Plasma Science.

[42]  Current Drive Chapter 6: Plasma auxiliary heating and current drive , 1999 .

[43]  K. M. Parmar,et al.  Development of 70kV, 22A DC power supply for High Power RF and microwave tubes , 2010 .

[44]  L. G. Popov,et al.  Development of 170 GHz/1 MW Russian gyrotron for ITER , 2001 .

[45]  M. Thumm,et al.  The cooling system for the 10 MW, 140 GHz, CW ECRH installation on Wendelstein 7-X , 2001 .

[46]  Andreas Meier,et al.  CVD diamond windows studied with low- and high-power millimeter waves , 2002 .

[47]  G. Michel,et al.  An integrated gyrotron controller , 2011 .

[48]  Seitaro Mitsudo,et al.  Quick Estimation of Mode Content in a Submillimeter-Wave Gyrotron Output , 1999 .

[49]  Martin Greenwald,et al.  The status of the ITER CODAC conceptual design , 2008 .

[50]  G. G. Denisov,et al.  Mode content analysis from intensity measurements in a few cross sections of oversized waveguides , 1997 .

[51]  S. Alberti,et al.  Theoretical Investigation of Iterative Phase Retrieval Algorithm for Quasi-Optical Millimeter-Wave RF Beams , 2009, IEEE Transactions on Plasma Science.

[52]  G. G. Denisov,et al.  3D wavebeam field reconstruction from intensity measurements in a few cross sections , 1995 .

[53]  C. Darbos,et al.  An overview of control system for the ITER electron cyclotron system , 2011 .

[54]  J. P. Crenn,et al.  Matching of a Gaussian beam into hollow oversized circular waveguides , 1989 .

[55]  Robert Lawrence Ives,et al.  Development of a high power CW waterload for Gaussian mode gyrotrons , 1999 .

[56]  Koji Takahashi,et al.  Progress of ITER equatorial electron cyclotron launcher design for physics optimization and toward final design , 2011 .

[57]  C. P. Moeller,et al.  HE11 mitre bends and gaps in a circular corrugated waveguide , 1994 .