Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology.

Incorporation of a biotinylated Hoveyda-Grubbs catalyst within (strept)avidin affords artificial metalloenzymes for the ring-closing metathesis of N-tosyl diallylamine in aqueous solution. Optimization of the performance can be achieved either by chemical or genetic means.

[1]  Tillmann Heinisch,et al.  Design strategies for the creation of artificial metalloenzymes. , 2010, Current opinion in chemical biology.

[2]  A. Kirschning,et al.  Sustainable concepts in olefin metathesis. , 2007, Angewandte Chemie.

[3]  N. Green [74] Spectrophotometric determination of avidin and biotin , 1970 .

[4]  Thomas R Ward,et al.  Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond. , 2011, Accounts of chemical research.

[5]  M. Francis,et al.  Optimization of a biomimetic transamination reaction. , 2008, Journal of the American Chemical Society.

[6]  M. Reetz Directed Evolution of Stereoselective Hybrid Catalysts , 2009 .

[7]  A. Hoveyda,et al.  The remarkable metal-catalysed olefin metathesis reaction , 2007, Nature.

[8]  Marjana Novic,et al.  (Strept)avidin as host for biotinylated coordination complexes: stability, chiral discrimination, and cooperativity. , 2006, Inorganic chemistry.

[9]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data-I Mathematical considerations. , 1985, Talanta.

[10]  A. Zocchi,et al.  Artificial metalloenzymes: (strept)avidin as host for enantioselective hydrogenation by achiral biotinylated rhodium-diphosphine complexes. , 2004, Journal of the American Chemical Society.

[11]  M. Francis,et al.  Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. , 2009, Journal of the American Chemical Society.

[12]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data--II: SPECFIT: two user-friendly programs in basic and standard FORTRAN 77. , 1985, Talanta.

[13]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[14]  M. Distefano,et al.  Generation of new enzymes via covalent modification of existing proteins. , 2001, Chemical reviews.

[15]  K. Grela,et al.  Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. , 2009, Chemical reviews.

[16]  J. Kirsch,et al.  A sensitive fluorometric assay for avidin and biotin. , 1977, Analytical biochemistry.

[17]  B. G. Davis,et al.  Olefin Metathesis for Site‐Selective Protein Modification , 2009, Chembiochem : a European journal of chemical biology.

[18]  Jason P. Jordan,et al.  Small-molecule N-heterocyclic-carbene-containing olefin-metathesis catalysts for use in water. , 2007, Angewandte Chemie.

[19]  M. Francis,et al.  Tyrosine-selective protein alkylation using pi-allylpalladium complexes. , 2006, Journal of the American Chemical Society.

[20]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data-III Model-free analysis of spectrophotometric and ESR titrations. , 1985, Talanta.

[21]  Yi Lu,et al.  Design of functional metalloproteins , 2009, Nature.

[22]  K. Grela,et al.  Aqueous olefin metathesis. , 2009, Angewandte Chemie.

[23]  R. Grubbs,et al.  Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. , 2010, Chemical reviews.

[24]  Z. Ball,et al.  Structure-selective modification of aromatic side chains with dirhodium metallopeptide catalysts. , 2010, Journal of the American Chemical Society.

[25]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[26]  B. G. Davis,et al.  A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. , 2009, Journal of the American Chemical Society.

[27]  B. G. Davis,et al.  Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection. , 2010, Journal of the American Chemical Society.

[28]  Gerard Roelfes,et al.  DNA-based asymmetric catalysis. , 2010, Chemical Society reviews.