Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI

We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.

[1]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[2]  L. Axel,et al.  Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. , 1989, Radiology.

[3]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[4]  Paul Suetens,et al.  Medical image registration using mutual information , 2003, Proc. IEEE.

[5]  Paul Suetens,et al.  A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information , 2002, MICCAI.

[6]  Daniel Rueckert,et al.  Analysis of myocardial motion in tagged MR images using nonrigid image registration , 2002, SPIE Medical Imaging.

[7]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[8]  Balraj Naren,et al.  Medical Image Registration , 2022 .

[9]  Daniel Rueckert,et al.  Spatio-temporal Alignment of 4D Cardiac MR Images , 2003, FIMH.

[10]  Jerry L. Prince,et al.  Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models , 2001, Computational Imaging and Vision.

[11]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[12]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[13]  Françoise J. Prêteux,et al.  Measuring Myocardial Deformations in Tagged MR Image Sequences Using Informational Non-rigid Registration , 2003, FIMH.

[14]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[15]  Patrick Clarysse,et al.  A review of cardiac image registration methods , 2002, IEEE Transactions on Medical Imaging.

[16]  C. Petitjean,et al.  Assessment of myocardial function: a review of quantification methods and results using tagged MRI. , 2005, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[17]  Françoise J. Prêteux,et al.  Variational non rigid image registration using exclusive F-information , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[18]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[20]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.

[21]  Josien P. W. Pluim,et al.  MUTUAL INFORMATION BASED REGISTRATION OF MEDICAL IMAGES , 2001 .

[22]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[23]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[24]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[25]  Caroline Petitjean Recalage non rigide d'images par approches variationnelles statistiques - Application à l'analyse et à la modélisation de la fonction myocardique en IRM , 2003 .

[26]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[27]  M. Lipton,et al.  Imaging of ischemic heart disease , 2002, European Radiology.

[28]  Daniel Rueckert,et al.  Construction of a Cardiac Motion Atlas From MR Using Non-rigid Registration , 2003, FIMH.

[29]  Alejandro F. Frangi,et al.  Three-dimensional cardiovascular image analysis , 2002, IEEE Transactions on Medical Imaging.