A review of models for effective thermal conductivity of composite materials
暂无分享,去创建一个
[1] J. Maxwell. A Treatise on Electricity and Magnetism , 1873, Nature.
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] L. Rayleigh,et al. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .
[4] A. Eucken. Die Wärmeleitfähigkeit keramischer feuerfester Stoffe : ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile , 1932 .
[5] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[6] Rolf Landauer,et al. The Electrical Resistance of Binary Metallic Mixtures , 1952 .
[7] O. K. Crosser,et al. Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .
[8] P. L. Kapitza,et al. THE STUDY OF HEAT TRANSFER IN HELIUM II , 1971 .
[9] L. Nielsen. The Thermal and Electrical Conductivity of Two-Phase Systems , 1974 .
[10] O. Hunderi,et al. Optical properties of Ag-SiO 2 Cermet films: A comparison of effective-medium theories , 1978 .
[11] O. Hunderi,et al. Conductivity of inhomogeneous materials: Effective-medium theory with dipole-dipole interaction , 1978 .
[12] D. Hasselman,et al. Effect of Thermal Expansion Mismatch on the Thermal Diffusivity of Glass‐Ni Composites , 1980 .
[13] Touvia Miloh,et al. The effective conductivity of composites with imperfect thermal contact at constituent interfaces , 1986 .
[14] R. Pohl,et al. Thermal Boundary Resistance from 0.5–300K , 1986 .
[15] Y. Benveniste,et al. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case , 1987 .
[16] D. Hasselman,et al. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .
[17] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[18] T. Miloh,et al. An exact solution for the effective thermal conductivity of cracked bodies with oriented elliptical cracks , 1989 .
[19] M. Tanaka,et al. Thermal conductivity of a polymer filled with particles in the wide range from low to super‐high volume content , 1990 .
[20] Tungyang Chen,et al. The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers , 1990 .
[21] T. Miloh,et al. On the effective thermal conductivity of coated short‐fiber composites , 1991 .
[22] Rishi Raj,et al. The effect of particle size on the thermal conductivity of ZnS/diamond composites , 1992 .
[23] Martin L. Dunn,et al. The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces , 1993 .
[24] D. Hasselman,et al. Effective Thermal Conductivity of Uniaxial Composite with Cylindrically Orthotropic Carbon Fibers and Interfacial Thermal Barrier , 1993 .
[25] B. E. Artz,et al. Thermal conductivity of metal‐matrix composites , 1995 .
[26] A. Hunt,et al. Geometric Structure and Thermal Conductivity of Porous Medium Silica Aerogel , 1995 .
[27] Jian Song,et al. Effective conductivity of composites with spherical inclusions: Effect of coating and detachment , 1996 .
[28] C. Nan,et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .
[29] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[30] Patrick E. Phelan,et al. Percolation theory applied to the analysis of thermal interface materials in flip-chip technology , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).
[31] Patrick E. Phelan,et al. SIZE EFFECTS ON THE THERMAL CONDUCTIVITY OF POLYMERS LADEN WITH HIGHLY CONDUCTIVE FILLER PARTICLES , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.
[32] Patrick E. Phelan,et al. A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance , 2001 .
[33] M. Monde,et al. A new estimation method of thermal diffusivity using analytical inverse solution for one-dimensional heat conduction , 2001 .
[34] S. Kim,et al. Determination of mesopore size of aerogels from thermal conductivity measurements , 2002 .
[35] A. Sánchez-Lavega,et al. On the effective thermal diffusivity of fiber-reinforced composites , 2002 .
[36] A. Bejan,et al. Heat transfer handbook , 2003 .
[37] R. Prasher,et al. An Effective Unit Cell Approach to Compute the Thermal Conductivity of Composites With Cylindrical Particles , 2003 .
[38] Q. Xue. A percolation model of metal–insulator composites , 2003 .
[39] J. D. Felske,et al. EFFECTIVE THERMAL CONDUCTIVITY OF COMPOSITE SPHERES IN A CONTINUOUS MEDIUM WITH CONTACT RESISTANCE , 2004 .
[40] V. S. Vaidhyanathan,et al. Transport phenomena , 2005, Experientia.
[41] Koichi Yagi,et al. Development of an Internet System for Composite Design and Thermophysical Property Prediction , 2006 .
[42] J. Molina,et al. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast , 2007 .
[43] H. Böhm,et al. Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites , 2007 .
[44] A. Strachan,et al. Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics. , 2007, The Journal of chemical physics.
[45] C. Matt,et al. Effective Thermal Conductivity of Composite Materials with 3-D Microstructures and Interfacial Thermal Resistance , 2007 .
[46] X. Fang. Non-steady effective thermal conductivity of matrix composite materials with high volume concentration of particles , 2008 .
[47] C. Toulemonde,et al. Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface , 2008 .
[48] X. Fang,et al. Scattering of thermal waves and non-steady effective thermal conductivity of composites with coated fibers , 2008 .
[49] Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations , 2009 .
[50] Xue-Qian Fang,et al. Scattering of thermal waves and non-steady effective thermal conductivity of composites with coated particles , 2009 .
[51] Xiaopeng Huang,et al. Thermal transport in Si/Ge nanocomposites , 2009 .
[52] Jinxi Liu,et al. Scattering of Thermal Waves and Unsteady Effective Thermal Conductivity of Particular Composites with Functionally Graded Interface , 2009 .
[53] Guoliang Tao,et al. A Percolation Model of Thermal Conductivity for Filled Polymer Composites , 2010 .
[54] Johan Liu,et al. Modeling of the effective thermal conductivity of composite materials with FEM based on resistor networks approach , 2010 .
[55] A. Satapathy,et al. A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites , 2010 .
[56] Structure, thermal, and mechanical properties of interfaces in PMC: A molecular simulation study , 2011 .
[57] Xiao-dong Wang,et al. Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials , 2011 .
[58] Xiao-dong Wang,et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure , 2012 .
[59] J. J. Alvarado-Gil,et al. A model for the effective thermal conductivity of metal-nonmetal particulate composites , 2012 .
[60] Jun-Jie Zhao,et al. Effects of solid–gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels , 2012, Journal of Nanoparticle Research.
[61] Xiao-dong Wang,et al. Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures , 2013 .