Thermoelectric Properties of Transition Metal Dichalcogenides: From Monolayers to Nanotubes

Thermoelectric material has the unique ability to directly convert waste heat into electricity, and theoretical guidance is an efficient method for exploring high-performance nanostructured thermoelectric materials. By using first-principles method, we systematically present the ballistic thermoelectric properties of four representative series of transition metal dichalcogenides (WSe2, MoSe2, WS2, and MoS2), each including monolayer, zigzag (10, 0), and armchair (6, 6) nanotubes. Consistent regularity can be seen for each considered series. From monolayer to small nanotubes, degeneration of thermoelectric figure of merit is observed, which indicates that transition metal dichalcogenide monolayers exhibit better thermoelectric performance than the small nanotubes. In addition, it is interesting to find out the divergence pattern with regard to the phononic thermal conductance, which points out that the room-temperature phononic thermal conductance of monolayers is bigger than that of zigzag (10, 0) nanotub...

[1]  Jiaxing Huang,et al.  Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production , 2014 .

[2]  Tiejun Zhu,et al.  Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure , 2008 .

[3]  Bing Sun,et al.  Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage , 2012 .

[4]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[5]  Jian-Sheng Wang,et al.  First-principles study of heat transport properties of graphene nanoribbons. , 2010, Nano letters (Print).

[6]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[7]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[8]  M. Nath,et al.  Simple Synthesis of MoS2 and WS2 Nanotubes , 2001 .

[9]  Darshana Wickramaratne,et al.  Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. , 2014, The Journal of chemical physics.

[10]  Jun Chen,et al.  Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation. , 2002, Chemical communications.

[11]  H. J. Liu,et al.  Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes , 2011 .

[12]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[13]  Jian-Sheng Wang,et al.  A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes , 2010, 1012.1081.

[14]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[15]  M. Nath,et al.  MoSe2 and WSe2 nanotubes and related structures. , 2001, Chemical communications.

[16]  Feng Qiu,et al.  Towards high-performance polymer-based thermoelectric materials , 2013 .

[17]  Xianfan Xu,et al.  Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. , 2012, Nano letters.

[18]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[19]  G. Liang,et al.  Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. , 2014, Physical chemistry chemical physics : PCCP.

[20]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[21]  Á. Rubio,et al.  Thermoelectric properties of atomic-thin silicene and germanene nano-structures , 2013, 1310.0971.

[22]  Zhiyong Tang,et al.  Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High‐Performance Supercapacitor Electrodes , 2015, Advanced materials.

[23]  Constructing metallic nanoroads on a MoS₂ monolayer via hydrogenation. , 2013, Nanoscale.

[24]  Reshef Tenne,et al.  Synthesis of Core–Shell Inorganic Nanotubes , 2010 .

[25]  Jer-Lai Kuo,et al.  Orbital analysis of electronic structure and phonon dispersion in MoS 2 , MoSe 2 , WS 2 , and WSe 2 monolayers under strain , 2013 .

[26]  T. Heine,et al.  From layers to nanotubes: Transition metal disulfides TMS2 , 2012, 1302.3478.

[27]  Baoling Huang,et al.  First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS , 2015 .

[28]  Shu-Shen Lyu,et al.  Substrate effect on thermal transport properties of graphene on SiC(0 0 0 1) surface , 2015 .

[29]  T. Pandey,et al.  Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2 , 2014, Nanotechnology.

[30]  Yi Xie,et al.  All‐Surface‐Atomic‐Metal Chalcogenide Sheets for High‐Efficiency Visible‐Light Photoelectrochemical Water Splitting , 2014 .

[31]  Ryan Soklaski,et al.  Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. , 2014, Nano letters.

[32]  M. Terrones,et al.  On the electronic structure of WS2 nanotubes , 2000 .

[33]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[34]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[35]  Gengchiau Liang,et al.  Thermoelectric performance of MX2 (M = Mo,W; X = S,Se) monolayers , 2013 .

[36]  F. M. Peeters,et al.  Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 , 2013, 1303.5861.

[37]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[38]  Yu-Shen Liu,et al.  Thermoelectric efficiency in nanojunctions: a comparison between atomic junctions and molecular junctions. , 2009, ACS nano.

[39]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .