Effects of N-terminus modifications on the conformation and permeation activities of the synthetic peptide L1A

[1]  M. Palma,et al.  Structure–activity relationship of mastoparan analogs: Effects of the number and positioning of Lys residues on secondary structure, interaction with membrane-mimetic systems and biological activity , 2015, Peptides.

[2]  M. Palma,et al.  The effects of the C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems. , 2014, Biochimica et biophysica acta.

[3]  Ildinete Silva-Pereira,et al.  Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance , 2013, Front. Microbiol..

[4]  A. Bahar,et al.  Antimicrobial Peptides , 2013, Pharmaceuticals.

[5]  A. Ito,et al.  Interaction of a synthetic antimicrobial peptide with model membrane by fluorescence spectroscopy , 2013, European Biophysics Journal.

[6]  Paramasamy Gunasekaran,et al.  Antimicrobial Peptides: Versatile Biological Properties , 2013, International journal of peptides.

[7]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[8]  Margarida Bastos,et al.  Role of lipids in the interaction of antimicrobial peptides with membranes. , 2012, Progress in lipid research.

[9]  Pramod C. Nair,et al.  An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. , 2011, Journal of chemical theory and computation.

[10]  Guangshun Wang,et al.  Identification of Novel Human Immunodeficiency Virus Type 1-Inhibitory Peptides Based on the Antimicrobial Peptide Database , 2010, Antimicrobial Agents and Chemotherapy.

[11]  H. Arcuri,et al.  Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista , 2009, Peptides.

[12]  Håvard Jenssen,et al.  Novel anti-infectives: is host defence the answer? , 2008, Current opinion in biotechnology.

[13]  A. Schmidtchen,et al.  Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37 , 2008, Antimicrobial Agents and Chemotherapy.

[14]  L. Juliano,et al.  Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates , 2008, Nature Protocols.

[15]  M. Palma,et al.  Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1 , 2008, European Biophysics Journal.

[16]  Artem Cherkasov,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm068 Databases and ontologies AMPer: a database and an automated discovery tool for antimicrobial peptides , 2022 .

[17]  A. Chattopadhyay,et al.  Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. , 2007, Biophysical journal.

[18]  M. Palma,et al.  Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista , 2005, Peptides.

[19]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[20]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[21]  Alan E. Mark,et al.  A new 2,2,2-trifluoroethanol model for molecular dynamics simulations , 2000 .

[22]  J. Donnelly,et al.  Comparison of NCCLS and 3-(4,5-Dimethyl-2-Thiazyl)-2,5-Diphenyl-2H-Tetrazolium Bromide (MTT) Methods of In Vitro Susceptibility Testing of Filamentous Fungi and Development of a New Simplified Method , 2000, Journal of Clinical Microbiology.

[23]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[24]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[25]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[26]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[27]  R. L. Baldwin,et al.  Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Hodges,et al.  Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. , 1984, The Journal of biological chemistry.

[29]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[30]  S. Fleischer,et al.  Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots , 1970, Lipids.

[31]  M. Palma,et al.  The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy , 2010, Amino Acids.

[32]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..

[33]  D. Andreu,et al.  Animal antimicrobial peptides: an overview. , 1998, Biopolymers.

[34]  C. Deber,et al.  Peptides in membranes: Helicity and hydrophobicity , 1995, Biopolymers.

[35]  R. L. Baldwin,et al.  Further studies of the helix dipole model: effects of a free alpha-NH3+ or alpha-COO- group on helix stability. , 1989, Proteins.

[36]  R. L. Baldwin,et al.  Further studies of the helix dipole model: Effects of a free α‐NH3+ or α‐COO− group on helix stability , 1989 .

[37]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .