Structures and properties of molecular torsion balances to decipher the nature of substituent effects on the aromatic edge-to-face interaction.

Various recent computational studies initiated this systematic re-investigation of substituent effects on aromatic edge-to-face interactions. Five series of Tröger base derived molecular torsion balances (MTBs), initially introduced by Wilcox and co-workers, showing an aromatic edge-to-face interaction in the folded, but not in the unfolded form, were synthesized. A fluorine atom or a trifluoromethyl group was introduced onto the edge ring in ortho-, meta-, and para-positions to the C-H group interacting with the face component. The substituents on the face component were varied from electron-donating to electron-withdrawing. Extensive X-ray crystallographic data allowed for a discussion on the conformational behavior of the torsional balances in the solid state. While most systems adopt the folded conformation, some were found to form supramolecular intercalative dimers, lacking the intramolecular edge-to-face interaction, which is compensated by the gain of aromatic π-stacking interactions between four aryl rings of the two molecular components. This dimerization does not take place in solution. The folding free enthalpy ΔG(fold) of all torsion balances was determined by (1)H NMR measurements by using 10 mM solutions of samples in CDCl3 and C6D6. Only the ΔG(fold) values of balances bearing an edge-ring substituent in ortho-position to the interacting C-H show a steep linear correlation with the Hammett parameter (σ(meta)) of the face-component substituent. Thermodynamic analysis using van't Hoff plots revealed that the interaction is enthalpy-driven. The ΔG(fold) values of the balances, in addition to partial charge calculations, suggest that increasing the polarization of the interacting C-H group makes a favorable contribution to the edge-to-face interaction. The largest contribution, however, seems to originate from local direct interactions between the substituent in ortho-position to the edge-ring C-H and the substituted face ring.

[1]  Scott L Cockroft,et al.  How much do van der Waals dispersion forces contribute to molecular recognition in solution? , 2013, Nature chemistry.

[2]  I. Mati,et al.  Seeing through solvent effects using molecular balances , 2013 .

[3]  J. Malone,et al.  An evaluation of substituent effects on aromatic edge-to-face interactions and CF-π versus CH-π interactions using an imino torsion balance model. , 2013, Organic & biomolecular chemistry.

[4]  I. Mati,et al.  Electrostatic modulation of aromatic rings via explicit solvation of substituents. , 2013, Journal of the American Chemical Society.

[5]  T. Schrader,et al.  Aromatic interactions by molecular tweezers and clips in chemical and biological systems. , 2013, Accounts of chemical research.

[6]  Kevin E. Riley,et al.  On the importance and origin of aromatic interactions in chemistry and biodisciplines. , 2013, Accounts of chemical research.

[7]  Steven E Wheeler,et al.  Understanding substituent effects in noncovalent interactions involving aromatic rings. , 2013, Accounts of chemical research.

[8]  H. Schneider Interactions in supramolecular complexes involving arenes: experimental studies. , 2013, Accounts of chemical research.

[9]  C. David Sherrill,et al.  Energy component analysis of π interactions. , 2013, Accounts of chemical research.

[10]  K N Houk,et al.  Aromatic interactions as control elements in stereoselective organic reactions. , 2013, Accounts of chemical research.

[11]  F. Diederich,et al.  Efficient Stacking on Protein Amide Fragments , 2013, ChemMedChem.

[12]  V. Lynch,et al.  Host–Guest Complexes of Pentiptycene Receptors Display Edge-to-Face Interaction , 2012 .

[13]  S. Wheeler Controlling the local arrangements of π-stacked polycyclic aromatic hydrocarbons through substituent effects , 2012 .

[14]  James R. Carey,et al.  A simple chiral recognition system to investigate substituent effects on π-π interactions. , 2012, Organic letters.

[15]  B. Iverson,et al.  Rethinking the term “pi-stacking” , 2012 .

[16]  M. Yasuda,et al.  Recognition of aromatic compounds by π pocket within a cage-shaped borate catalyst. , 2012, Angewandte Chemie.

[17]  A. Mazzanti,et al.  An experimental study on the effect of substituents on aromatic-aromatic interactions in dithia[3,3]-metaparacyclophanes. , 2012, Chemistry.

[18]  Y. An,et al.  Substituent effects on non-covalent interactions with aromatic rings: insights from computational chemistry. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  C. Sherrill,et al.  Origin of the surprising enhancement of electrostatic energies by electron-donating substituents in substituted sandwich benzene dimers. , 2011, Journal of the American Chemical Society.

[20]  Esteban Lanzarotti,et al.  Aromatic-Aromatic Interactions in Proteins: Beyond the Dimer , 2011, J. Chem. Inf. Model..

[21]  Steven E Wheeler,et al.  Local nature of substituent effects in stacking interactions. , 2011, Journal of the American Chemical Society.

[22]  L. Salonen,et al.  Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen , 2011 .

[23]  F. Diederich,et al.  Aromatic rings in chemical and biological recognition: energetics and structures. , 2011, Angewandte Chemie.

[24]  B. W. Gung,et al.  Relative substituent position on the strength of π–π stacking interactions , 2010 .

[25]  Steven E. Wheeler,et al.  Probing substituent effects in aryl-aryl interactions using stereoselective Diels-Alder cycloadditions. , 2010, Journal of the American Chemical Society.

[26]  W. A. Nugent,et al.  Stereoselective control by face-to-face versus edge-to-face aromatic interactions: the case of C(3)-Ti(IV) amino trialkolate sulfoxidation catalysts. , 2010, Chemistry.

[27]  Steven E. Wheeler,et al.  Through-Space Effects of Substituents Dominate Molecular Electrostatic Potentials of Substituted Arenes. , 2009, Journal of chemical theory and computation.

[28]  C. Hunter,et al.  Desolvation and substituent effects in edge-to-face aromatic interactions. , 2009, Chemical communications.

[29]  H. Schneider Bindungsmechanismen in supramolekularen Komplexen , 2009 .

[30]  Hans-Jörg Schneider,et al.  Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.

[31]  Steven E. Wheeler,et al.  Origin of substituent effects in edge-to-face aryl–aryl interactions , 2009, Molecular physics.

[32]  Ashley L. Ringer,et al.  Substituent effects in sandwich configurations of multiply substituted benzene dimers are not solely governed by electrostatic control. , 2009, Journal of the American Chemical Society.

[33]  F. Diederich,et al.  Orthogonal dipolar interactions between amide carbonyl groups , 2008, Proceedings of the National Academy of Sciences.

[34]  F. Diederich,et al.  Substituent effects on the aromatic edge-to-face interaction. , 2008, Chemical communications.

[35]  Steven E. Wheeler,et al.  Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. , 2008, Journal of the American Chemical Society.

[36]  C. Sherrill,et al.  Substituent effects in parallel-displaced pi-pi interactions. , 2008, Physical chemistry chemical physics : PCCP.

[37]  K. Baldridge,et al.  Through-space interactions between parallel-offset arenes at the van der Waals distance: 1,8-diarylbiphenylene syntheses, structure and QM computations. , 2008, Physical chemistry chemical physics : PCCP.

[38]  M. Head‐Gordon,et al.  Systematic optimization of long-range corrected hybrid density functionals. , 2008, The Journal of chemical physics.

[39]  W. B. Schweizer,et al.  Molekulare Torsionswaagen: Anzeichen für attraktive orthogonale dipolare Wechselwirkungen zwischen organischem Fluor und Amidgruppen† , 2007 .

[40]  F. Diederich,et al.  Molecular torsion balances: evidence for favorable orthogonal dipolar interactions between organic fluorine and amide groups. , 2007, Angewandte Chemie.

[41]  D. A. Engebretson,et al.  Strong enantioselective self-recognition of a small chiral molecule. , 2007, Organic letters.

[42]  J. G. Vinter,et al.  Substituent effects on aromatic stacking interactions. , 2007, Organic & biomolecular chemistry.

[43]  Gerhard Klebe,et al.  Understanding Binding Selectivity toward Trypsin and Factor Xa: the Role of Aromatic Interactions , 2007, ChemMedChem.

[44]  Scott L Cockroft,et al.  Chemical double-mutant cycles: dissecting non-covalent interactions. , 2007, Chemical Society reviews.

[45]  S. Tsuzuki,et al.  Intermolecular interactions of nitrobenzene-benzene complex and nitrobenzene dimer: significant stabilization of slipped-parallel orientation by dispersion interaction. , 2006, The Journal of chemical physics.

[46]  C. Hunter,et al.  Desolvation tips the balance: solvent effects on aromatic interactions. , 2006, Chemical communications.

[47]  C. David Sherrill,et al.  High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers , 2006 .

[48]  Ryan P. Lively,et al.  The Effect of Multiple Substituents on Sandwich and T‐Shaped π–π Interactions , 2006 .

[49]  Seiji Tsuzuki,et al.  Magnitude and Physical Origin of Intermolecular Interactions of Aromatic Molecules: Recent Progress of Computational Studies , 2006 .

[50]  B. W. Gung,et al.  A threshold for charge transfer in aromatic interactions? A quantitative study of pi-stacking interactions. , 2005, The Journal of organic chemistry.

[51]  Kevin E. Riley,et al.  Effects of fluorine substitution on the edge-to-face interaction of the benzene dimer. , 2005, The journal of physical chemistry. B.

[52]  G. S. Maciel,et al.  Charges derived from electrostatic potentials: Exploring dependence on theory and geometry optimization levels for dipole moments , 2005 .

[53]  C. Urch,et al.  Electrostatic control of aromatic stacking interactions. , 2005, Journal of the American Chemical Society.

[54]  H. Reich,et al.  The strength of parallel-displaced arene-arene interactions in chloroform. , 2005, The Journal of organic chemistry.

[55]  Eun Cheol Lee,et al.  Substituent effects on the edge-to-face aromatic interactions. , 2005, Journal of the American Chemical Society.

[56]  C. Wolf,et al.  Highly congested nondistorted diheteroarylnaphthalenes: model compounds for the investigation of intramolecular pi-stacking interactions. , 2005, The Journal of organic chemistry.

[57]  F. Martin,et al.  Charge distribution in the water molecule—A comparison of methods , 2005, J. Comput. Chem..

[58]  F. Diederich,et al.  A weak attractive interaction between organic fluorine and an amide group. , 2004, Angewandte Chemie.

[59]  C. David Sherrill,et al.  Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations , 2004 .

[60]  François Diederich,et al.  Wechselwirkungen mit aromatischen Ringen in chemischen und biologischen Erkennungsprozessen , 2003 .

[61]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[62]  F. J. Luque,et al.  Theoretical Study of Alkyl-π and Aryl-π Interactions. Reconciling Theory and Experiment , 2002 .

[63]  C. Hunter,et al.  Substituent effects on edge-to-face aromatic interactions. , 2002, Chemistry.

[64]  Gianni Chessari,et al.  An evaluation of force-field treatments of aromatic interactions. , 2002, Chemistry.

[65]  Marcey L. Waters,et al.  Unexpected substituent effects in offset π-π stacked interactions in water , 2002 .

[66]  C. Urch,et al.  A supramolecular system for quantifying aromatic stacking interactions. , 2001, Chemistry.

[67]  C. Hunter,et al.  Quantitative measurements of edge-to-face aromatic interactions by using chemical double-mutant cycles. , 2001, Chemistry.

[68]  J. G. Vinter,et al.  Quantitative determination of intermolecular interactions with fluorinated aromatic rings. , 2001, Chemistry.

[69]  C. Wilcox,et al.  Measurements of Molecular Electrostatic Field Effects in Edge-to-Face Aromatic Interactions and CH-π Interactions with Implications for Protein Folding and Molecular Recognition , 1998 .

[70]  C. Hunter,et al.  Structure–activity relationship for quantifying aromatic interactions† , 1998 .

[71]  J. Fraser Stoddart,et al.  π–π INTERACTIONS IN SELF‐ASSEMBLY , 1997 .

[72]  Juan C. Morales,et al.  Chemische Cyclen mit doppelter Strukturvariation zur Bestimmung schwacher intermolekularer Wechselwirkungen: aromatische Kante-auf-Fläche-Wechselwirkungen† , 1996 .

[73]  C. Hunter,et al.  Chemical Double-Mutant Cycles for the Measurement of Weak Intermolecular Interactions: Edge-to-Face Aromatic Interactions† , 1996 .

[74]  J. Siegel,et al.  Polar Interactions between Stacked π Systems in Fluorinated 1,8-Diarylnaphthalenes: Importance of Quadrupole Moments in Molecular Recognition† , 1995 .

[75]  Franco Cozzi,et al.  Polare Wechselwirkungen zwischen gestapelten π‐Systemen in fluorierten 1,8‐Diarylnaphthalinen: Bedeutung des Quadrupolmoments für die molekulare Erkennung , 1995 .

[76]  J. Siegel,et al.  Interaction between stacked aryl groups in 1,8-diarylnaphthalenes: Dominance of polar/π over charge-transfer effects , 1995 .

[77]  C. Hunter Meldola Lecture. The role of aromatic interactions in molecular recognition , 1994 .

[78]  C. Wilcox,et al.  MOLECULAR TORSION BALANCE FOR WEAK MOLECULAR RECOGNITION FORCES. EFFECTS OF TILTED-T EDGE-TO-FACE AROMATIC INTERACTIONS ON CONFORMATIONAL SELECTION AND SOLID-STATE STRUCTURE , 1994 .

[79]  C. Hunter Arene—Arene Interactions: Electrostatic or Charge Transfer? , 1993 .

[80]  Christopher A. Hunter Wechselwirkungen zwischen aromatischen Systemen: Beruhen sie auf elektrostatischen Kräften oder Charge‐Transfer‐Übergängen? , 1993 .

[81]  Jay S. Siegel,et al.  Dominance of polar/.pi. over charge-transfer effects in stacked phenyl interactions , 1993 .

[82]  Jay S. Siegel,et al.  Polar/.pi. interactions between stacked aryls in 1,8-diarylnaphthalenes , 1992 .

[83]  J M Thornton,et al.  Pi-pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. , 1991, Journal of molecular biology.

[84]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[85]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[86]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[87]  T. H. Webb,et al.  Improved synthesis of symmetrical and unsymmetrical 5,11-methanodibenzo[b,f][1,5]diazocines. Readily available nanoscale structural units , 1990 .

[88]  Stephen K. Burley,et al.  Electrostatic interactions in aromatic oligopeptides contribute to protein stability , 1989 .

[89]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[90]  C. Wilcox,et al.  Molecular Armatures. Synthesis and Structure of TröGer'S Base Analogues Derived From 4-, 2,4-, 3,4-, and 2,4,5-Substituted Aniline Derivatives , 1988 .

[91]  G. Petsko,et al.  Weakly polar interactions in proteins. , 1988, Advances in protein chemistry.

[92]  A. Bondi van der Waals Volumes and Radii , 1964 .